94 research outputs found

    Evolutionary adaptation of visual pigments in geckos for their photic environment

    Get PDF
    家の守り神「ヤモリ」が夜でも色を見分けられるのはなぜ --ヤモリが持つ特殊な色覚能力の分子メカニズムを解明--. 京都大学プレスリリース. 2021-10-04.Vertebrates generally have a single type of rod for scotopic vision and multiple types of cones for photopic vision. Noteworthily, nocturnal geckos transmuted ancestral photoreceptor cells into rods containing not rhodopsin but cone pigments, and, subsequently, diurnal geckos retransmuted these rods into cones containing cone pigments. High sensitivity of scotopic vision is underlain by the rod’s low background noise, which originated from a much lower spontaneous activation rate of rhodopsin than of cone pigments. Here, we revealed that nocturnal gecko cone pigments decreased their spontaneous activation rates to mimic rhodopsin, whereas diurnal gecko cone pigments recovered high rates similar to those of typical cone pigments. We also identified amino acid residues responsible for the alterations of the spontaneous activation rates. Therefore, we concluded that the switch between diurnality and nocturnality in geckos required not only morphological transmutation of photoreceptors but also adjustment of the spontaneous activation rates of visual pigments

    Wounding triggers callus formation via dynamic hormonal and transcriptional changes

    Get PDF
    Wounding is a primary trigger of organ regeneration, but how wound stress reactivates cell proliferation and promotes cellular reprogramming remains elusive. In this study, we combined transcriptome analysis with quantitative hormonal analysis to investigate how wounding induces callus formation in Arabidopsis (Arabidopsis thaliana). Our time course RNA-seq analysis revealed that wounding induces dynamic transcriptional changes, starting from rapid stress responses followed by the activation of metabolic processes and protein synthesis and subsequent activation of cell cycle regulators. Gene ontology analyses further uncovered that wounding modifies the expression of hormone biosynthesis and response genes, and quantitative analysis of endogenous plant hormones revealed accumulation of cytokinin prior to callus formation. Mutants defective in cytokinin synthesis and signaling display reduced efficiency in callus formation, indicating that de novo synthesis of cytokinin is critical for wound-induced callus formation. We further demonstrate that type-B ARABIDOPSIS RESPONSE REGULATOR-mediated cytokinin signaling regulates the expression of CYCLIN D3;1 (CYCD3;1) and that mutations in CYCD3;1 and its homologs CYCD3;2 and 3 cause defects in callus formation. In addition to these hormone-mediated changes, our transcriptome data uncovered that wounding activates multiple developmental regulators, and we found novel roles of ETHYLENE RESPONSE FACTOR 115 and PLETHORA3 (PLT3), PLT5, and PLT7 in callus generation. All together, these results provide novel mechanistic insights into how wounding reactivates cell proliferation during callus formation

    The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels

    Get PDF
    Growth is characterized by the interplay between cell division and cell expansion, two processes that occur separated along the growth zone at the maize leaf. To gain further insight into the transition between cell division and cell expansion, conditions were investigated in which the position of this transition zone was positively or negatively affected. High levels of gibberellic acid (GA) in plants overexpressing the GA biosynthesis gene GA20-OXIDASE (GA20OX-1(OE)) shifted the transition zone more distally, whereas mild drought, which is associated with lowered GA biosynthesis, resulted in a more basal positioning. However, the increased levels of GA in the GA20OX-1(OE) line were insufficient to convey tolerance to the mild drought treatment, indicating that another mechanism in addition to lowered GA levels is restricting growth during drought. Transcriptome analysis with high spatial resolution indicated that mild drought specifically induces a reprogramming of transcriptional regulation in the division zone. 'Leaf Growth Viewer' was developed as an online searchable tool containing the high-resolution data

    Pinopsin evolved as the ancestral dim-light visual opsin in vertebrates

    Get PDF
    脊椎動物の視覚進化モデルを修正 --暗所視と色覚はどっちが先か--. 京都大学プレスリリース. 2018-10-02.Pinopsin is the opsin most closely related to vertebrate visual pigments on the phylogenetic tree. This opsin has been discovered among many vertebrates, except mammals and teleosts, and was thought to exclusively function in their brain for extraocular photoreception. Here, we show the possibility that pinopsin also contributes to scotopic vision in some vertebrate species. Pinopsin is distributed in the retina of non-teleost fishes and frogs, especially in their rod photoreceptor cells, in addition to their brain. Moreover, the retinal chromophore of pinopsin exhibits a thermal isomerization rate considerably lower than those of cone visual pigments, but comparable to that of rhodopsin. Therefore, pinopsin can function as a rhodopsin-like visual pigment in the retinas of these lower vertebrates. Since pinopsin diversified before the branching of rhodopsin on the phylogenetic tree, two-step adaptation to scotopic vision would have occurred through the independent acquisition of pinopsin and rhodopsin by the vertebrate lineage

    Preventive effects of betamethasone valerate ointment for radiation-induced severe oral mucositis in patients with oral or oropharyngeal cancer: protocol for a multicentre, phase II, randomised controlled trial (Bet-ROM study)

    Get PDF
    Introduction: This is a randomised, multi-centre, open-label, phase II study to evaluate the efficacy of betamethasone valerate ointment on radiation-induced oral mucositis in patients with head and neck cancer undergoing concomitant radiotherapy with cisplatin or cetuximab.Methods and analysis: The trial will take place at seven hospitals in Japan. Patients will be randomised (1:1) into betamethasone and control groups after the occurrence of grade 1 oral mucositis. In the betamethasone group, patients will use betamethasone valerate ointment five times a day, in addition to usual oral hygiene guidance. The primary endpoint is the incidence and onset time of grade 3 oral mucositis. The secondary endpoints are the incidence and onset time of grade 2 oral mucositis, incidence and onset time of oral candidiasis, completion of radiation therapy and adverse events. Target accrual is 102 patients with a two-sided type I error rate of 5% and 80% power to detect an 80% risk reduction in the incidence of grade 3 oral mucositis.Ethics and dissemination: This study was approved by the Clinical Research Review Board of Nagasaki University (No. CRB20-009). All participants will be required to provide written informed consent. Findings will be disseminated through scientific and professional conferences and peer-reviewed journal publication. The datasets generated during the study will be available from the corresponding author on reasonable request.Trial registration number: jRCTs071200013

    SlLAX1 is Required for Normal Leaf Development Mediated by Balanced Adaxial and Abaxial Pavement Cell Growth in Tomato

    Get PDF
    Leaves are the major plant organs with a primary function for photosynthesis. Auxin controls various aspects of plant growth and development, including leaf initiation, expansion and differentiation. Unique and intriguing auxin features include its polar transport, which is mainly controlled by the AUX1/LAX and PIN gene families as influx and efflux carriers, respectively. The role of AUX1/LAX genes in root development is well documented, but the role of these genes in leaf morphogenesis remains unclear. Moreover, most studies have been conducted in the plant model Arabidopsis thaliana, while studies in tomato are still scarce. In this study, we isolated six lines of the allelic curly leaf phenotype ‘curl’ mutants from a γ-ray and EMS (ethyl methanesulfonate) mutagenized population. Using a map-based cloning strategy combined with exome sequencing, we observed that a mutation occurred in the SlLAX1 gene (Solyc09g014380), which is homologous to an Arabidopsis auxin influx carrier gene, AUX1 (AtAUX1). Characterization of six alleles of single curl mutants revealed the pivotal role of SlLAX1 in controlling tomato leaf flatness by balancing adaxial and abaxial pavement cell growth, which has not been reported in tomato. Using TILLING (Targeting Induced Local Lesions IN Genome) technology, we isolated an additional mutant allele of the SlLAX1 gene and this mutant showed a curled leaf phenotype similar to other curl mutants, suggesting that Solyc09g014380 is responsible for the curl phenotype. These results showed that SlLAX1 is required for normal leaf development mediated by balanced adaxial and abaxial pavement cell growth in tomato

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    AtAMT1;4, a Pollen-Specific High-Affinity Ammonium Transporter of the Plasma Membrane in Arabidopsis

    Get PDF
    Pollen represents an important nitrogen sink in flowers to ensure pollen viability. Since pollen cells are symplasmically isolated during maturation and germination, membrane transporters are required for nitrogen import across the pollen plasma membrane. This study describes the characterization of the ammonium transporter AtAMT1;4, a so far uncharacterized member of the Arabidopsis AMT1 family, which is suggested to be involved in transporting ammonium into pollen. The AtAMT1;4 gene encodes a functional ammonium transporter when heterologously expressed in yeast or when overexpressed in Arabidopsis roots. Concentration-dependent analysis of 15N-labeled ammonium influx into roots of AtAMT1;4-transformed plants allowed characterization of AtAMT1;4 as a high-affinity transporter with a Km of 17 μM. RNA and protein gel blot analysis showed expression of AtAMT1;4 in flowers, and promoter–gene fusions to the green fluorescent protein (GFP) further defined its exclusive expression in pollen grains and pollen tubes. The AtAMT1;4 protein appeared to be localized to the plasma membrane as indicated by protein gel blot analysis of plasma membrane-enriched membrane fractions and by visualization of GFP-tagged AtAMT1;4 protein in pollen grains and pollen tubes. However, no phenotype related to pollen function could be observed in a transposon-tagged line, in which AtAMT1;4 expression is disrupted. These results suggest that AtAMT1;4 mediates ammonium uptake across the plasma membrane of pollen to contribute to nitrogen nutrition of pollen via ammonium uptake or retrieval
    corecore