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Abstract  1 

Leaves are the major plant organs with a primary function for photosynthesis. Auxin controls various aspects of 2 

plant growth and development, including leaf initiation, expansion, and differentiation. Unique and intriguing 3 

auxin features include its polar transport, which is mainly controlled by the AUX1/LAX and PIN gene families as 4 

influx and efflux carriers, respectively. The role of AUX1/ LAX genes in root development is well documented, 5 

but the role of these genes in leaf morphogenesis remains unclear. Moreover, most studies have been conducted 6 

in the plant model Arabidopsis thaliana, while studies in tomato are still scarce. In this study, we isolated six 7 

lines of the allelic curly leaf phenotype ‘curl’ mutants from a γ-ray and EMS (ethyl methanesulfonate) 8 

mutagenized population. Using a map-based cloning strategy combined with exome sequencing, we observed 9 

that a mutation is occurred in the SlLAX1 gene (Solyc09g014380)), which is homologous to an Arabidopsis auxin 10 

influx carrier gene, AUX1 (AtAUX1). Characterization of six alleles of single curl mutants revealed the pivotal 11 

role of SlLAX1 in controlling tomato leaf flatness by balancing adaxial and abaxial pavement cell growth, which 12 

has not been reported in tomato. Using TILLING (Targeting Induced Local Lesions IN Genome) technology, we 13 

isolated an additional mutant allele of SlLAX1 gene and this mutant showed a curled leaf phenotype similar to 14 

other curl mutants, suggesting that Solyc09g014380 is responsible for the curl phenotype. These results showed 15 

that SlLAX1 is required for normal leaf development mediated by balanced adaxial and abaxial pavement cell 16 

growth in tomato. 17 

Keywords: auxin, curl mutants, curly leaf, SlLAX1, tomato 18 
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Introduction 1 

Leaves are the major plant organs whose primary function involves photosynthesis. Leaves play a major role in 2 

sensing the quality, quantity and duration of light, all of which are crucial for complete plant growth and 3 

development. Understanding leaf initiation and development are important subjects in plant biology. Most leaves 4 

are dorsoventrally (upper to bottom) flattened and develop distinct upper (adaxial) and lower (abaxial) 5 

surfaces. Balanced coordination of polarity, auxin response, and cell division is essential for formation of normal 6 

and flat leaves development. Any imbalance of these coordination results in altered leaf shapes such as curly, 7 

crinkly, twisted, rolled, radial, or shrunken leaves (Yu et al. 2005, Liu et al. 2010, Liu et al. 2011, and Serrano-8 

Cartagena et al. 1999). The formation of flat leaves enables the optimum capture of sunlight during 9 

photosynthesis.  10 

An important factor controlling leaf morphogenesis is the phytohormone auxin. Indole-3-acetic acid (IAA) 11 

is the natural form of auxin that controls various aspects plant growth and development, including cell division, 12 

expansion and differentiation, leaf initiation, and morphogenesis. One of the unique and intriguing features of 13 

auxin is its transport (Paciorek et al. 2005, Tromas and Perrot-Rechenmann 2010). It is known that auxin is 14 

synthesized in young leaves and in the shoot apex and is transported basipetally to all plant organs (reviewed in 15 

Bennet et al. 1998, Tromas and Perrot-Rechenmann 2010). Auxin transport involves two patterns: long-distance 16 

transport through phloem and short-distance or cell-to-cell transport called polar auxin transport (PAT). At the 17 

cellular level, IAA is distributed through a combination of membrane diffusion (passive uptake), carrier-mediated 18 

uptake or proton-driven distribution (Delbarre et al. 1996). PAT contributes to 85% of short-distance auxin 19 

transport. It is well established that polar auxin localization controls the direction of auxin movement in whole-20 

plant organs. 21 

Several auxin carriers have been identified, including AUX1/LAX (LAX: like AUX1), PIN (PIN-FORMED) 22 

and PGP/MDR (P-glycoprotein/ multidrug resistance)-like proteins. AUX1/LAX is reported to be an auxin influx 23 

carrier that facilitates auxin movement from outside the cell to inside the cell, while PIN is an efflux carrier that 24 

pumps auxin from the cell into the intercellular space. PGP/MDR-like proteins are reported to have the ability to 25 

be either influx or efflux carriers (Yang and Murphy 2009), but the contribution of these proteins is considerably 26 

small compared to that of the AUX1/LAX and PIN families (Kramer and Bennet 2006, reviewed in Swarup and 27 

Peret 2012). 28 

There are numerous studies highlighting the effects of mutations in AUX/LAX gene family in the model plant 29 

Arabidopsis. However, most studies have focused on root phenotypes. For instance, the AUX1/LAX family has 30 
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been reported to promote lateral root emergence and formation (Marchant et al. 2002, Swarup et al. 2008, 1 

reviewed in Peret et al. 2009), root gravitropism (Bennet et al. 1996, Marchant et al. 1999), and root-pathogen 2 

interactions (Lee et al. 2011). Recently, AUX1 function in the aerial parts of plants has received interest, but 3 

studies are still considerably scarce. In Arabidopsis, AUX1 has been reported to control phyllotaxis patterning 4 

(Bainbridge et al. 2008), vascular patterning, xylem differentiation (Fabregas et al. 2015), and leaf serration 5 

(Kasprzewska et al. 2015). Additionally, although PAT is governed and maintained by the coordinated action of 6 

AUX1/LAX and PIN carrier proteins, among auxin carriers, PIN1 is the most studied. The role of the PIN 7 

protein family in leaf morphogenesis is well documented, yet the role of AUX1/LAX remains neglected or is 8 

underestimated. Furthermore, almost all studies have been carried out in the model plant Arabidopsis, while the 9 

role of auxin influx carriers in other model plants such as tomato is poorly understood. 10 

In this study, we isolated six lines of curly leaf (curl) mutants from the ‘Micro-Tom’ mutant population 11 

that had been previously established by γ-ray irradiation and EMS (ethyl methanesulfonate) treatment (Saito et 12 

al. 2011, Shikata et al. 2016). The curl mutants showed dorsoventrally impaired leaf flatness, which exhibited 13 

severe upward bending or hyponasty on the transverse axis. Through map-based cloning combined with exome 14 

sequencing (ES), we characterized six alleles of the curly leaf mutants, which have nonsense mutation in the 15 

SlLAX1 gene. We reported that the SlLAX1 gene controls curly leaf phenotype in the tomato curl mutants. This 16 

feature has never been characterized. The characterization of several alleles of single curl mutants in this study 17 

sheds light on the pivotal role of SlLAX1 in controlling leaf flatness mediated by normal adaxial-abaxial 18 

pavement cell growth. We also combined forward and reverse genetic approaches to validate the candidate gene. 19 

Using TILLING technology, we screened another nonsense mutant allele that consistently shows a similar curly 20 

leaf phenotype with that of the curl mutants obtained by a forward genetic approach. 21 

 22 

Result 23 

Isolation and phenotypic characterization of the curly leaf mutants 24 

We previously developed a large mutant population of ‘Micro-Tom’, a model tomato cultivar, using γ-ray 25 

irradiation and EMS mutagenesis (Saito et al. 2011, Shikata et al. 2016). Currently, we have 9,216 EMS mutant 26 

lines. From the M3 generation of this mutant population, we isolated six mutant lines exhibiting a severe upward 27 

curly leaf (hyponastic) phenotype, three lines were used for further analysis (Fig. 1A, B). The newly developed 28 

young leaves of the curl mutants were flat and indistinguishable from those of wild-type (WT) (Fig. 1C, D), 29 

suggesting that the impairment of leaf curvature was not detectable at the early vegetative stage. The leaves 30 
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became curly about one month after sowing and were continuously curly until the end of growing period. The 1 

initiation of curly leaves was not related to the transition from the vegetative to the reproductive stage, and the 2 

leaf phenotype could not be restored at any stage once the curly leaves had formed. Growing the curl mutants in 3 

a high-humidity environment in in vitro culture could not rescue the curly phenotype (Fig 1E). Additionally, 4 

curly leaves continuously appeared irrespective of water availability in the soil medium (Fig. 1F, G). The leaf 5 

water potential of the mutants and WT was also comparable (Supplementary Table S1). These data suggested that 6 

the curly leaf mutant phenotype is persistent, irrespective of relative humidity or water availability.  7 

We also analyzed the percentage of reduced leaf area and perimeter both in young and mature leaves of 8 

mutants by flattening the curl mutant leaves. In the young leaves, leaf area was markedly reduced (41.0 - 56.0%, 9 

Table 1). The leaf perimeters of the WT and mutants were comparable. Consistently, in the mature leaves, the 10 

reduction in leaf area was more evident (55.8 – 64.0%) (Table 1), indicating a progression of severity that was 11 

concomitant with leaf maturity. Then, to investigate how and when the curly leaf is formed and its progression at 12 

the organ level, we measured the curvature index (CI) in both young and mature leaves according to the method 13 

of Liu et al. (2010). Negative curvature represents upward bending of the leaf. At the early stage of leaf initiation 14 

and development, mutants developed and maintained flat leaves; after several (4-7) days following leaf initiation, 15 

the leaves gradually became curly, and the curly leaf severity increased concomitant leaf maturity 16 

(Supplementary Fig. S1A-C). The leaf incurvature was initiated from young leaves firstly at the tip along the 17 

transversal axis to a low extent, while the longitudinal axis remained flat in all mutant lines (Table 2, Fig. 2A, B). 18 

To understand the curly leaf progression, the global curvature of mature leaves of all mutants was also measured 19 

(Table 2). Consistently, leaf incurvature was observed along the transversal axis to a high extent and the 20 

longitudinal axis remained normal at all stages of leaf development. In the mature leaves, the whole-leaf had 21 

become curly (Fig. 2C, D). These data suggested that leaf incurvature was more severe as leaf maturity 22 

progressed.  23 

 24 

Genetic mapping of curl mutants 25 

To examine the inheritance pattern of the curl mutants, we crossed the mutants with the WT ‘Micro-Tom’ and 26 

another tomato cultivar ‘Ailsa Craig’, and observed the segregation ratio in the F2 population. Phenotypic 27 

observation was carried out visually according to the presence or absence of the curly leaf phenotype. The 28 

mutant phenotype appeared in the F2 generation only as a recessive genetic trait (Table 3). The ratio of WT and 29 

mutant phenotypes fit to Mendelian segregation ratio for monogenic traits (3:1), indicating a monogenic 30 
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recessive inheritance of all curl mutants. Similarly, in the ‘Ailsa Craig’ background, the inheritance of the curl 1 

mutants was also recessive (Supplementary Table S2). Allelism test was performed to observe complementation 2 

effects among mutant lines and to examine whether mutations occurred because of the same causal gene. The 3 

complementation effect was determined in the F1 generation. All crosses between each pair of mutant lines 4 

showed curly leaf phenotypes (Table 4), indicating that they are allelic which means causal mutation occurred in 5 

the same locus. The curl-6 mutant generated from EMS treatment (see Plant Material) was also allelic with the 6 

other mutants which were generated from γ-ray irradiation. We confirmed that all curl mutant lines were allelic, 7 

therefore, for further analyses we used only three mutant alleles, namely, curl-1, curl-2, and curl-6. 8 

To identify the candidate gene controlling the curly leaf phenotype, we performed a map-based cloning 9 

approach using PCR-based DNA markers including CAPS and SNPs (Shirasawa et al. 2010, Chusreeaeom et al. 10 

2014, Ariizumi et al. 2014, Hao et al. 2017). We found that the mutation likely occurred in the short arm of 11 

chromosome 9 (Supplementary Table S3). The highest ‘Micro-Tom’ allele frequency was observed in this 12 

chromosome region between markers tomInf5375 and 14109_151 and ranged from 0.68-0.89, suggesting that the 13 

responsible gene could be localized in the short arm of chromosome 9 close to marker 14109_151 (physical 14 

position SL2.40ch09: 2052389, Fig. 3). 15 

 16 

SlLAX1 gene is commonly mutated in several curl mutant alleles 17 

To narrow down the candidate region obtained by rough mapping, we performed exome sequence (ES). Four 18 

lines of the curl mutants, curl-1, curl-2, curl-3 and curl-6 were used for the ES analysis. The F2 progenies 19 

derived from the cross between mutant and WT ‘Micro-Tom’ were divided into flat leaf and curly phenotype 20 

based on presence or absence of curly leaf phenotype, and then flat leaf and mutant bulked segregants were 21 

subjected to exome sequencing. By bowtie2-GATK pipeline using the tomato genome reference version SL2.50 22 

as a reference (see Materials and Methods), we identified 5,430, 5,110, 5,050, and 4,829 genome-wide mutations 23 

for curl-1, curl-2, curl-3, and curl-6 mutant segregants, respectively. When allele frequencies were compared 24 

between these mutants, a strong association was found around the top region of chromosome 9 in all of the four 25 

mapping populations (Fig. 4). This result suggested that the causal gene for curly phenotype is located in this 26 

chromosome region, in agreement with the result of rough mapping of chromosome (Fig. 3, Supplementary 27 

Table S3). Furthermore, we then searched for the gene in which mutation is commonly occurring in some of the 28 

curl mutants. We found that mutations are commonly occurring in Solyc09g014380.2.1, which is a homologue of 29 

Arabidopsis AtAUX1 (AT2G38120; BLASTx E-value = 0.0, protein amino acid similarity = 93%). 30 
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Solyc09g014380.2.1, tomato locus SlLAX1, gene spans ~3.8 kb genomic region, while cDNA including 1 

untranslated region (UTR) spans 1.8 kb. The SlLAX1 has seven exons, including UTR region in both 5’ and 3’ 2 

ends (Fig. 4). The curl-2 and curl-6 had nucleotide substitution from G to A in the exon 6, physical position 3 

SL2.50ch09: 6010739 bp (Table 5). This SNP produced a premature stop codon (W262*) in the deduced protein 4 

sequence of SlLAX1. According to the SL2.50 tomato genome reference, WT ‘Micro-Tom’ produced 411 a.a. 5 

length of SlLAX1 protein, whereas the curl-2 and curl-6 mutants produced only 261 a.a. length of the protein., 6 

losing the last 150 a.a. (63.7% out of WT protein). curl-1 and curl-3 had SNP from G to T in the splicing 7 

junction of intron 4, physical position SL2.50ch09: 6009292 bp. These mutations were also confirmed by 8 

dideoxy sequencing of cDNA (Fig. 5A, B).  9 

As described above, the curl-1 and curl-3 had a mutation in the 1st nucleotide or splicing junction of intron 4 10 

(Fig 4, Table 5). Interestingly, sequencing of SlLAX1 cDNA in these alleles revealed that abnormal splicing is 11 

occurred around the intron 4, which led to deletion of five nucleotides within exon 4 (nucleic acid 433-437, Fig. 12 

5C). Given that mutation in the curl-1 and curl-3 is G to T substitution in the splicing junction of intron 4, 13 

presumably, there was an alteration in donor and recipient sites for intron splicing. Splicing of intron 4 was 14 

occurred in the position of 435 bp from start codon in the tomato genome of the WT, whereas intron splicing is 15 

occurred in 5 bp upstream of the end of exon 4 (430 bp from start codon) in both the curl-1 and the curl-3 alleles. 16 

Then the next sequence from following exon 5 is GGTTGA; this TGA may produce premature stop codon, 17 

which is a position of 435 bp from the start codon (Fig. 5E). Thus, curl-1 and curl-3 alleles could produce a C-18 

terminal truncated SlLAX1 protein that is only 145 a.a. length of protein (Fig. 5D). We also analyzed the 19 

transcript level of the SlLAX1 by qRT-PCR using mature curly leaf cDNA. The expression of the SlLAX1 gene in 20 

the three curly leaf mutants was significantly reduced to only 35-40% of WT expression (Fig. 5F), which 21 

indicates low abundance of this gene transcript in the mutants. Taken together, these results indicated that all of 22 

curl mutants carried loss-of-function mutation in the SlLAX1 gene.  23 

 24 

Screening a new allele of the nonsense mutation of SlLAX1 by TILLING 25 

Because our research group had previously developed large mutant resources in the ‘Micro-Tom’ background 26 

and proved that TILLING is an efficient tool for isolating desired mutants from the ‘Micro-Tom’ mutant 27 

collection (Okabe et al. 2011), we utilized TILLING to search for other SlLAX1 mutant alleles. We screened 28 

4,608 lines in the M2 and M3 generations to obtain new SlLAX1 mutant alleles. In addition, because we only had 29 

one EMS mutant screened by forward genetics (curl-6), we attempted to obtain other mutant alleles to confirm 30 
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the phenotype consistency. 1 

We designed a primer pair to amplify 865 bp along exon 6 of the SlLAX1 gene for the TILLING screening 2 

target and found five new mutant alleles that carried intron, missense, and nonsense mutations (Supplementary 3 

Fig. S2A, B, Supplementary Table S5). The curl-6/TOMJPE8506, which was previously isolated by forward 4 

genetics, was also confirmed by TILLING screening. Then, to validate the mutant phenotype, one line that 5 

carried a nonsense mutation, TOMJPW601-1, was renamed as ‘curl-7’ and used for further analysis. This mutant 6 

line carried a one base pair substitution from G to A in 554th nucleotide from start codon, which led to the 7 

conversion of tryptophan to a premature stop codon at the position of 185th a.a. (Fig. 6A). The curl-7 mutant 8 

exhibited curly leaf phenotype like as the other curl mutant alleles (Fig. 6B). Furthermore, by dideoxy 9 

sequencing, we confirmed the consistency of the TILLING result (Fig. 6C, D).  This result supports the evidence 10 

that SlLAX1 is the gene responsible for the curly leaf phenotype in tomato.  These results again indicated that 11 

mutation in SlLAX1 produces the curly leaf phenotype. The mutations in the same gene consistently resulted the 12 

same phenotype, strongly suggesting that SlLAX1 functions in controlling tomato curly leaf phenotype. 13 

 14 

Endogenous IAA levels and the expression of auxin-related genes in curl mutants 15 

As described above, all curl mutants commonly have mutation in the SlLAX1 gene, which encodes an auxin 16 

influx carrier. To test the potential function of SlLAX1 as an auxin transporter in tomato, we measured the leaf 17 

auxin content at three stages: (i) in young leaves, (ii) before curly leaves formed when leaves just turned into 18 

curly; and (iii) in mature leaves, after leaves were fully curly. The IAA content significantly decreased from 19 

young leaves to mature leaves in both the WT and three curl mutants (Supplementary Fig. S3A). However, the 20 

IAA content at each leaf stage was comparable between the WT and the curl mutants. Similarly, IAA conjugates 21 

and total IAA between the WT and the curl mutants were also comparable (Supplementary Fig. S3B, C).  22 

In Arabidopsis, numerous findings have indicated the role of LAX1/AUX1 family in root gravitropism and 23 

lateral root formation (Bennet et al. 1996, Marchant et al. 2002, reviewed in Swarup and Peret, 2012). 24 

Importantly, root agravitropism is the most prominent defect and well-characterized trait of the Arabidopsis aux1 25 

mutant. In addition, the aux1 mutant also showed lateral root formation defects (Marchant et al. 2002). Thus, we 26 

further tested these traits in the curl mutants; as expected, the curl mutants showed agravitropism as well as 27 

reduced lateral root formation, in agreement with Arabidopsis aux1 mutant phenotype (Supplementary Fig. S4), 28 

suggesting the possibility of involvement of SlLAX1 as an auxin influx carrier in tomato similar to AtAUX1. 29 

 30 
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Abaxial pavement cell size of the curl mutants were significantly larger 1 

Because SlLAX1 gene function was commonly disabled in curl mutants and auxin has been known to affect 2 

pavement cell (Pérez-Pérez et al. 2010, reviewed in Sandalio et al. 2016), we hypothesized that the curly leaf 3 

formation may related to differential cell growth on adaxial and abaxial surfaces. To observe histological features 4 

of the curl mutants, we measured pavement cell size using a scanning electron microscope (SEM) in the adaxial 5 

and abaxial surfaces at the mature leaf stage at the curly part (Table 6, Fig. 7). We noted that cell enlargement in 6 

the curl mutants was more prominent in the abaxial side, while there was no significant difference in adaxial 7 

pavement cell. As a consequence, the ratio of abaxial and adaxial pavement cell was more prominent in the curl 8 

mutants. We also quantified the pavement cell number both in adaxial and abaxial surfaces. The number of 9 

pavement cells in both surfaces was comparable (Table 6). These data revealed that the leaf flatness impairment 10 

of the curl mutants is likely due to the differential cell growth between the adaxial and abaxial epidermal layers. 11 

Most likely, the curly leaf phenotype is related to cell enlargement in abaxial side. 12 

 13 

Relative expression of auxin-related genes in the curl mutants 14 

Recently, some studies have reported that impairment auxin biosynthesis, signaling, degradation, and conjugation 15 

result in leaf development defect such as wrinkled, curled leaf, and rounded leaf phenotype. We checked relative 16 

expression of some putative tomato auxin-related genes which were reported involved to control leaf flatness 17 

phenotype such as AtDof5.1 (Kim et al. 2010) which is homologous to SlDof25 and SlDof28 in tomato (Cai et al. 18 

2013), LCR (LEAF CURLING RESPONSIVENESS) (Song et al. 2012), PNH (PINHEAD) (Newman et al. 2012), 19 

YUC1 (Cheng et al. 2007). At the young leaf stage, the expression level of LCR gene was slightly decreased in 20 

the curl mutants compared to that of WT but increased in the mature leaf (Fig. 8C, I). YUC1 expression was also 21 

significantly decreased both in the young and mature leaves of the curl mutants (Fig. 8D, J) There was no 22 

significant different in Sldof28, and PNH at both stages (Fig. 8B, H, E, K). SlDof25 expression level was 23 

increased in the curl mutants at the mature leaf stage (Fig. 8G), while there was no significant change at the 24 

young leaf stage (Fig. 8A). It has been reported that Arabidopsis activation tagging mutant Dof5.1-D exhibited 25 

an upward-curling leaf phenotype by promoting Revoluta transcription (Kim et al. 2010). Revoluta (Rev) is an 26 

adaxial specification gene (Emery et al. 2003, Prigge et al. 2015). And most importantly, in tomato, it has also 27 

been reported that overexpression of a microRNA166-resistant version of SLREV (35S::REVRis) showed upward 28 

curly leaf phenotype (Hu et al. 2014). The gene expression of SlDof 25 and SlRev was consistent with these 29 

findings (Fig. 8G, L). 30 
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Discussion 1 

SlLAX1 gene is responsible for the curly leaf phenotype in tomato 2 

We characterized several alleles of tomato mutants exhibiting severe upward-curling leaf phenotypes at the 3 

mature leaf stage (Fig. 1A, B). This mutant phenotype occurred irrespective of water content or relative humidity 4 

(Fig. 1E, G, Supplementary Table S1). Six lines were isolated using a forward genetic approach by visually 5 

selecting curly leaf phenotypes in a previously generated tomato mutant population (Saito et al. 2011, Shikata et 6 

al. 2016).  7 

Map-based cloning combined with ES revealed that the mutation occurred in the SlLAX1 (Solyc09g014380) 8 

gene (Fig. 3, 4). Then, to validate the candidate gene, we utilized TILLING to obtain additional allelic line with 9 

nonsense mutation, curl-7, which was generated by EMS. The curl-7 mutant leaves displayed similar curly 10 

leaves to the other curl mutants (Fig. 6B). Furthermore, we confirmed the full-length coding sequence of SlLAX1 11 

(Fig. 6C, D), which supported the evidence that SlLAX1 is the gene responsible for the curly leaf phenotype. 12 

Taken together, the characterization of multiple alleles in this study that consistently showed similar phenotypes 13 

is strong evidence for the role of SlLAX1 in controlling the curly leaf phenotype. To our knowledge, this study is 14 

the first example of the successful exome sequence application in tomato in the identification of causal gene 15 

preceded by a forward genetic approach. 16 

SlLAX1 encodes a transmembrane amino acid transporter protein and belongs to the amino acid/auxin 17 

permease (AAAP) family. Homology searches indicated that the SlLAX1 protein sequence is homologous to 18 

Arabidopsis thaliana AtAUX1 (AT2G38120). In Arabidopsis, AUX1 is one of four auxin influx carriers 19 

belonging to AUX1/LAX family that controls several developmental processes including gravitropism responses, 20 

venation patterns, and lateral roots (Vieten et al. 2007, Bennet et al. 1996). Although recent findings have 21 

indicated that the AUX/LAX1 family also control aerial part development such as leaf serration (Kasprzewska et 22 

al. 2015), phyllotaxis patterning, vascular patterning, and xylem differentiation (Bainbridge et al. 2008, Fabregas 23 

et al. 2015), the role of AUX1/LAX gene family in leaf curling are poorly understood. In contrast, mutations in 24 

many auxin-related genes showed an impaired leaf flatness phenotype (Esteve-Bruna et al. 2013, Zgurski et al. 25 

2005). In tomato, few studies have shown a relationship between auxin and leaf flatness; for instance, SlARF4-26 

RNAi lines produce hyponastic leaves (Sagar et al. 2013) and SlPIN4-RNAi lines show leaf flatness defects as 27 

well as altered plant architecture (Pattison and Catala 2012). However, the role of SlLAX1 in controlling leaf 28 

curly phenotype has not been reported in tomato or other major crops. 29 

The tomato AUX1/LAX family consists of five genes (SlLAX1-5). They share high identity and similarity; the 30 
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identity of SlLAX2, SlLAX3, SlLAX4, and SlLAX5 with SlLAX1 are 80.36%, 79.70%, 92.65%, and 80.87%, 1 

respectively (Sol Genomics Network). All SlLAX genes are expressed in the mature leave and root of tomato 2 

(Pattison and Catala 2012). The single mutants depleting SlLAX1 used in this study, curl-1-7, showed a severe 3 

phenotype effect in leaf flatness, suggesting that the importance of SlLAX1 in controlling leaf flatness in mature 4 

leaves. Although the functional redundancy of the AUX1/LAX family, in addition to the function of SlLAX1 itself, 5 

is poorly characterized in tomato, their function in Arabidopsis is well characterized especially in root 6 

development. Although four AUX1/LAX genes share high sequence identity and similarity, AtAUX1 has the 7 

strongest auxin influx activity (Peret et al. 2012, Rutschow et al. 2014). Peret et al. (2012) also reported that 8 

subfunctionalization of the AUX1/LAX family in root based on their distinct pattern of spatial expression and the 9 

subcellular localization. In contrast, the AUX1/LAX genes play redundantly in the context of phyllotaxy, vascular 10 

patterning, and xylem differentiation (Bainbridge et al. 2008, Fabregas et al. 2015). Therefore, the functional 11 

redundancy of SlLAXs family in tomato leaf curling phenotype awaits further investigation. 12 

 13 

Loss-of-function of SlLAX1 protein is related to the curly leaf phenotype 14 

Based on experimental evidence, Swarup et al. (2004) reported that Arabidopsis AUX1 protein has eleven 15 

transmembrane (TM) helixes. Using publicly available server, we checked the prediction of transmembrane 16 

helices in the SlLAX1 protein. According to a prediction program in http://www.cbs.dtu.dk/services/TMHMM/, 17 

both AtAUX1 and SlLAX1 (Supplementary Fig. S5A) have 10 TM helixes. The curl-2 and curl-6 mutants (Fig. 18 

5B) carry a nonsense mutation which is located in the TM helix VII (Supplementary Fig. S5C) according to 19 

TMHMM, which is equivalent to the central region of AtAUX1 and has proven to be particularly important for 20 

protein function (Swarup et al. 2004). In addition, both curl-1 and curl-3 mutations (Fig. 5D) are located in TM 21 

helix IV (Supplementary Fig. S5B), which is in the similar part of the N-terminal half of AtAUX1 and is 22 

essential for its correct localization (Peret et al. 2012). The curl-7 mutant has only five TM helixes, losing the 23 

rest five TM helixes (Supplementary Fig. S5D). Furthermore, the curl-1/curl-3, curl-2/curl-6, and curl-7 24 

mutations caused nonsense mutations that can produce only 35, 63, and 45% of the WT protein, respectively (Fig. 25 

5B, D, and 6D). Additionally, the relative expression of the curl mutant alleles (curl-1, curl-2, and curl-6) was 26 

less than 40% compared to that of WT (Fig. 5F). These reasons presumably account for the loss-of-function 27 

mutations of the SlLAX1 gene. 28 

To test the potential function of SlLAX1 as an auxin transporter, we first measured leaf endogenous auxin 29 

content. However, IAA content was comparable between WT and the curl mutants at all stages (Supplementary 30 
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Fig. S3). Numerous findings have indicated that AtAUX1 plays an important role in root gravitropism and lateral 1 

root development (Bennet et al. 1996, Marchant et al. 1999). Root gravitropism response is also commonly used 2 

to check auxin response and distribution. Therefore, we next tested these assays and found that the root 3 

gravitropism response of the curl mutants was affected by the SlLAX1 mutation. In addition, lateral root 4 

emergence was also disrupted (Supplementary Fig. S4). Although the functional characterization of SlLAX1 has 5 

not been conducted in tomato and we do not yet have direct evidence in this study, agravitropism and lateral root 6 

formation defects of the curl mutants indicated that SlLAX1 may have a potential function as an auxin 7 

transporter similar to AtAUX1, and SlLAX1 might participate in local auxin distribution without affecting total 8 

endogenous auxin content of the whole leaf.  Functional analysis of SlLAX1 gene remains to be determined.  9 

 10 

Curly leaf phenotype of the curl mutants is presumably caused by an imbalance of pavement cell 11 

enlargement between adaxial and abaxial side 12 

The curly leaf phenotype was not observed at the early stage of leaf development (Fig. 1C, D, Supplementary Fig. 13 

S1), and does not related to relative humidity and water availability (Fig. 1 E, G). Thus, we hypothesized that the 14 

curly leaf phenotype was caused by the alteration of adaxial/abaxial cell ratio rather than impairment adaxial-15 

abaxial polarity since adaxial-abaxial polarity is established at the very early stage of leaf development, that is, at 16 

the primordium stage. As expected, pavement cell size in the abaxial in the curl mutants was significantly larger 17 

compared to that of WT, while there was no significant difference in the adaxial side. The number of pavement 18 

cell in adaxial and abaxial sides was comparable. The upward curling of the curl mutants might be explained by 19 

the differential growth of pavement cells in adaxial and abaxial cell surfaces, which is supported by similar 20 

observation of incurvata6 (icu6), semi-dominant allele of the AUXIN RESISTANT3 (AXR3), that showed an 21 

upward curly phenotype caused by a reduced adaxial/abaxial cell size ratio (Perez-Perez et al. 2010). The 22 

imbalance epidermal adaxial-abaxial cell growth which led to either epinastic (downward curvature) or 23 

hyponastic leaf is not new phenomenon. In previous finding, it was reported that auxin hyper accumulation 24 

plant produced leaf epinastic curvature  that was formed due to an increased growth of the leaf adaxial side (Klee 25 

et al. 1987,  Romano et al. 1993,  Kim et al. 2007), that induced by reduced auxin export that may cause its 26 

hyper-accumulation on the adaxial side. Taken together, SlLAX1 might have a function not in the establishment 27 

of adaxial-abaxial polarity but rather in balancing adaxial/abaxial cell size ratio in later stages of leaf 28 

development. The evaluation of auxin distribution and/or analysis of SlLAX1 gene expression on adaxial and 29 

abaxial leaf surfaces should allow for a better understanding of the SlLAX1 function in this process. 30 
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According to the relative expression of some tomato putative auxin-related genes controlling leaf flatness, 1 

SlYuc1 showed prominent changes in both young and mature leaves of the curl mutants. YUC is a family of 2 

genes that are orthologs to ToFZY (Expo´sito-Rodrı´guez et al. 2007), which has a function in local auxin 3 

biosynthesis (Zhao et al. 2001). In the previous finding, it has been reported that aux1 and yuc mutants in 4 

Arabidopsis have a synergistic effect to enhance each other to control leaf development. Lower expression of 5 

SlYuc1 does not change leaf auxin content presumably because SlYuc is family genes (Expósito-Rodríguez et al. 6 

2007). Other SlYuc genes may compensate total auxin biosynthesis, resulting in comparable amounts of auxin 7 

content in entire leaf. In Arabidopsis, activation tagging of AtDof5.1 resulted in an upward curly leaf phenotype 8 

(Kim et al. 2010). Dof5.1 was demonstrated to promote the Revoluta gene expression by binding to its promoter. 9 

Similar to these finding (Kim at al. 2010), expression of SlDof25, an ortholog of Dof5.1, was increased in the all 10 

curl mutants (Fig. 8G). The SlRev expression level was also increased (Fig. 8L). Up regulation of AtDof5.1 also 11 

repressed transcript levels of auxin biosynthesis genes, which is consistent with low expression level of SlYuc1 in 12 

the curl mutants (Fig. 8D, J). In tomato, it has also been reported that overexpression of a microRNA166-13 

resistant version of SLREV (35S::REVRis) showed upward curly leaf phenotype (Hu et al. 2014). Collectively, our 14 

findings are similar to previous findings which reinforce the partial disturbance of auxin homeostasis in the 15 

SlLAX1 mutants.  16 

The fact that lower auxin content triggers cell expansion is well established (Ishida et al. 2012, reviewed in 17 

Velasquez et al. 2016). We hypothesize that the loss-of-function of SlLAX1 in the curl mutants results in 18 

imbalanced adaxial/abaxial pavement cell growth leading to curly leaf phenotype. Depletion of SlLAX1 in the 19 

curl mutants disrupts auxin transport in either adaxial or abaxial leaf surface. Given that there was no significant 20 

difference in the adaxial pavement cell size (Table 6, Fig 7A), SlLAX1 action appears to be restricted to the 21 

abaxial side. SlLAX1 belongs to the SlLAXs family and other members are known to be expressed in leaves 22 

(Pattison and Catala, 2012). It is possible that other influx transporters compensate for the loss-of-function of 23 

SlLAX1 in the adaxial side. In contrast, our data suggest that SlLAX1 is a major determinant of auxin 24 

transportation dominant in the abaxial side. In adaxial side, where SlLAX1 is not a major auxin influx carrier, 25 

presumably auxin content of the curl mutants was similar or higher than that of the WT, while decreased auxin 26 

content in abaxial side due to low influx carrier activity. Auxin which is not uptake by abaxial cell, may be 27 

accumulated in the adaxial side, or alternatively accumulated in the extracellular space (most likely the latter 28 

because the cell number in the adaxial and abaxial was comparable, means there was no increase of cell division 29 

in adaxial). Therefore, the auxin content in the curl mutants could be maintained at the similar level with the WT 30 
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(Supplementary Fig. S3). Imbalanced adaxial/abaxial cell growth due to differential auxin accumulation is also 1 

well established (Perez-Perez et al. 2010, reviewed in Sandalio et al. 2016). We speculate that the lower auxin 2 

content in abaxial cell surface triggers cell expansion and imbalanced cell growth in both surface leading to curly 3 

leaf emergence. This hypothesis awaits further investigation.  4 

In brief, this study contributes to the newly characterized role of SlLAX1 in controlling leaf development in 5 

tomato by balancing the adaxial-abaxial pavement cell enlargement potentially mediated by auxin. The 6 

evaluation of auxin distribution and/or analysis of SlLAX1 gene expression on adaxial and abaxial leaf surfaces 7 

should allow for a better understanding of the SlLAX1 function in this process. Additionally, analysis of double 8 

mutants with other LAX or PIN family members and other adaxial-abaxial-specification genes would be helpful 9 

to dissect the precise mechanism of SlLAX1 in normal leaf development in plants. 10 

 11 

Materials and methods 12 

Plant material and growth conditions 13 

Tomato (Solanum lycopersicum cv. ‘Micro-Tom’) curly leaf (curl) mutants were generated by EMS and γ-ray 14 

irradiation. The mutants were obtained from the National BioResources (NBRP) Project at the University of 15 

Tsukuba (Saito et al. 2011, Shikata et al. 2016). From the M3 mutagenized population, we isolated six lines of the 16 

curly leaf phenotype mutants, herein referred to as ‘curl’ mutants. The mutant screening was carried out visually 17 

using mature plants showing severe curly leaf phenotypes. Five mutant alleles, curl 1-5, were generated by γ-ray 18 

irradiation, and one mutant allele, curl-6, was generated by EMS mutagenesis. Furthermore, using TILLING 19 

screening, we screened another EMS mutant, curl-7. These mutants were registered in the TOMATOMA mutant 20 

database (Saito et al. 2011, http://tomatoma.nbrp.jp/). The NBRP accession numbers are listed in Supplementary 21 

Table S6. Unless otherwise stated, further analyses of the curl mutants were conducted after two backcrosses to 22 

the WT ‘Micro-Tom’ to remove any possible background mutation following the mutagenesis treatment. The 23 

plants were grown under standard cultivation conditions in the greenhouse facility at the University of Tsukuba. 24 

 25 

Genomic DNA extraction, construction of mapping population, DNA marker, and genetic analysis 26 

Genomic DNA was extracted from 2-month-old plants. A maximum of 100 mg of fresh leaf sample was extracted 27 

using a Maxwell® 16 Tissue DNA Purification Kit (Promega, Madison, USA). To perform rough mapping using 28 

DNA markers, curl-2 was crossed to another tomato cultivar, ‘Ailsa Craig,’ to obtain a mapping population. From 29 

approximately 100 plants of the F2 mapping population, 19 plants exhibiting the curly mutant phenotype were 30 
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isolated, and genomic DNA was extracted from the leaves of the individual plants. These plants were subjected to 1 

rough mapping experiments. All SNP and CAPS DNA markers were designed according to the AMF2 (F2: S. 2 

lycopersicum ‘Ailsa Craig’ x S. lycopersicum ‘Micro-Tom’) linkage map information that publicly available from the 3 

Kazusa DNA Research Institute (KDRI) webpage (http://marker.kazusa.or.jp/Tomato/, Shirasawa et al. 2010). The 4 

primers and restriction enzyme used in the rough mapping chromosome are listed in Supplementary Table S7.  5 

 6 

Exome sequence and variant identification 7 

ES was performed to narrow down the candidate genes. Four alleles, curl-1, curl-2, curl-3, and curl-6, of the curl 8 

mutants of the F2 mutant population backcrossed to the WT were used. The mutants and WT phenotypes were 9 

selected in the F2 population based on the presence or absence of curly leaves among approximately 100 F2 10 

plants for each line, after which their DNA samples were bulked based on phenotype. Exome sequence analysis 11 

was then performed based on the Roche exome sequence SeqCap® EZ SR protocol 12 

(http://sequencing.roche.com/).  13 

Briefly, genomic DNA was treated with a Covaris® S220 Ultrasonicator (Covaris, Massachusetts, USA) to 14 

achieve an average length of 200 bp. Then, a multiplex NGS library was constructed using a KAPA® Library 15 

Preparation Kit and SeqCap® adapter kit (Roche, Basel, Switzerland). After constructing the NGS library, exome 16 

capture was conducted using a custom probe set that was designed based on the tomato genome reference 17 

version SL2.40 (supporting dataset, Sol Genomics Network, https://solgenomics.net). This probe set was 18 

designed to capture 49.5 Mb of exonic DNA regions (Supplementary Data S1). The resultant exome library was 19 

amplified by 14 cycles of post-capture ligation-mediated PCR with KAPA HiFi HostStart ReadyMix (Roche) and 20 

then subjected to Illumina HiSeq-2000 sequencing set to the 100-bp paired-end mode. Paired-end short read data 21 

were subjected to quality filtering using FASTXToolkit with the parameters of –Q 20 –P 90. Then, short reads 22 

were aligned to the tomato genome reference version SL2.50 using bowtie2 software with the following 23 

parameters: L,0,-0.16 --mp 2,2 --np 1 --rdg 1,1 --rfg 1,1. On average, 98.8 ± 0.03% of the target exonic regions 24 

were covered by short reads. The average read depth was 18 ± 1.5. Genome-wide DNA polymorphisms and 25 

mutations were identified based on the alignment results by the HaplotypeCaller function of the Genome 26 

Analysis Toolkit (GATK) with the following parameters: -mmq 5 -forceActive -stand_call_conf 10 -27 

stand_emit_conf 10. The resultant DNA variant information was further combined into one genomic VCF dataset 28 

with the GenotypeGVCFs function of the GATK. Three wild-type ES datasets (accession No. DRR097500 to 29 

DRR097502, DNA Data Bank of Japan (DDBJ)), two wild-type whole-genome NGS datasets (DDBJ accession 30 
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No. DRR097503 and DRR097504), and one publicly available wild-type whole-genome NGS dataset 1 

(Kobayashi et al. 2014) were used as controls to remove intra-cultivar variations that are present between WT 2 

‘Micro-Tom’ lines. DNA variants were further removed if their allele frequencies exceeded >90% in the WT F2 3 

bulked segregants because they were also expected to be intra-cultivar variations. Those variants with < 20% 4 

allele frequency or with a read depth < 6 were also removed because they were likely to be false-positives. ES 5 

datasets for curl mutants are available in DDBJ (accession No. DRR097492 to DRR097502).  6 

 7 

RNA extraction and cDNA synthesis 8 

Total RNA was extracted from young and mature leaves (when the leaves were completely curly) using an 9 

RNeasy Mini Kit (QIAGEN) according to the manufacturer’s protocol. To remove genomic DNA contamination, 10 

two steps were applied: an on-column RNase-free DNase Set (QIAGEN) and an RNA Clean & Concentrator™-5 11 

(Zymo Research). Subsequently, cDNA was synthesized from 2000 ng of total RNA by a SuperScript III First 12 

Strand Synthesis Kit (Invitrogen, Thermo Fisher Scientific, USA) according to the manufacturer’s instructions. 13 

 14 

Cloning and sequencing of the full-length coding sequence the SlLAX1 gene 15 

The full-length coding sequence (1236 bp) of the SlLAX1 gene from three independent plants was amplified by 16 

PCR. The primer sequences are listed in Supplementary Table S4. Subsequently, PCR products were loaded onto 17 

a 0.8–1.5% agarose gel, which was then electrophoresed for 45-60 min. Next, the band was visualized under 18 

70% UV and then cut either with a gel cutter or blade. Any visible desired product band was individually cut, 19 

removed, and subsequently subjected to purification using a Wizard® SV Gel and PCR Clean-Up System 20 

(Promega, Madison, USA). DNA purification by centrifugation was applied. The purified PCR product was then 21 

cloned into the entry vector pCR8/GW/TOPO (Invitrogen, http://www.lifetechnologies.com/) using an In-22 

Fusion® HD Cloning Kit (Takara Bio USA, Inc.) according to the manufacturer’s protocol. Then, plasmids from 23 

clones were purified using a FastGene Plasmid Mini Kit (Nippon Genetics, Japan). The plasmid fragments were 24 

sequenced using M13 primers (Supplementary Table S4).  25 

 26 

qRT-PCR analysis 27 

mRNA expression level was quantified using qRT-PCR. A 10 ng/µl cDNA template of three biological 28 

replicates was used for gene expression analyses. The SlActin gene was used as an internal control (Lovdal and 29 

Lillo. 2009). qRT-PCR was carried out using a CFX96 Real-Time System (Bio-Rad) with SYBR Premix ExTaq 30 
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II (Ili RNase H Plus; TaKaRa Bio, Japan). The primers used for qRT-PCR are listed in the Supplementary Table 1 

S4. Relative gene expression was quantified using the ∆∆CT method (Pfaffl 2001). The qRT-PCR mixture 2 

reaction and thermal cycle conditions were as described by Shinozaki et al. (2015). The primers for qRT-PCR 3 

were designed using the Primer3 Plus website (http://primer3plus.com/); two exons in the forward and primer 4 

were joined to exclude any possibility of contamination of genomic DNA. 5 

 6 

Screening new SlLAX1 mutant alleles by TILLING 7 

The TILLING population was previously described by Okabe et al. (2013), and the TILLING experiments were 8 

performed as described by Okabe et al. (2011). We attempted to screen for mutations in the coding region of the 9 

SlLAX1 gene. The primer pair was designed to span exon 6. Given that exon 6 is the longest exon, we also 10 

identified an EMS mutant line, curl-6, that carries a nonsense mutation in exon 6 of SlLAX1. The primer pairs 11 

used in the TILLING experiment were forward 5’-TGGTACATGGGAACTAGCTAAGCC-3’ and reverse 5’-12 

ACCTGACGAGCGGATGATTTTC-3,’ which amplified 865 bp of genomic DNA template; the 5’ end of each 13 

primer was labeled with DY-681 or DY-781, which are equivalent to IRDye 700 or IRDye 800 14 

(https://www.biomers.net/), respectively. 15 

 16 

Morphological analysis 17 

The curvature index (CI) of mutants was measured in accordance with the method introduced by Liu et al. (2010) on 18 

the 5th leaflet. Leaf area and perimeter analyses were conducted at the young and mature leaf stages; 15 leaves 19 

harvested from the same position were used as samples. Leaf images were captured using a digital camera, and the 20 

leaf area and perimeter were measured using CellSensStandard imaging software (Olympus, Japan). The leaf 21 

perimeter and leaf area were measured by following the edge of the leaf using a closed polygon measurement tool 22 

within the CellSensStandard software. The reduction in leaf area and leaf perimeter (%) were measured by 23 

comparing the values before flattening and the values after flattening (multiplied by 100).  24 

 25 

Scanning electron microscope (SEM) experiment  26 

The leaf epidermal surface was observed using a scanning electron microscope (Hitachi Tabletop Microscope 27 

TM3000, Japan). The cell feature was measured at the mature leaf stage when the leaves were completely turned 28 

to curly, precisely in the same regions on adaxial and abaxial surfaces. Mature fresh leaves were sampled and 29 

flattened before being subjected to microscopic observation. Approximately 0.5 x 0.5 cm2 of adaxial or abaxial 30 
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surface was placed into a sample box, after which the epidermal pavement cell was imaged at 400x 1 

magnification for at least three biological replications. The cell size was quantified separately using 2 

CellSensStandard software. All measurements were obtained for at least three independently captured SEM 3 

images for each replication and three fields of view for each image. 4 

For the number of pavement cell quantification, leaf samples were cut from midway precisely between the 5 

midrib to the margin of fully curly leaves. We used precisely the same position both in adaxial and in abaxial side, 6 

one side was used for adaxial pavement cell observation, and the other was used for abaxial. About 2-4 mm leaf 7 

sample in the tip area of transversal axis was cut irrespective the size from the midrib to the margin, and it was 8 

subjected to SEM experiment (Supplementary Fig. S6). The cell number was counted thoroughly in that region. 9 

Measurements were obtained from three biological replications. 10 

 11 

Measurement of the auxin content in leaves 12 

Leaves were sampled at three stages from the same positions at (i) young leaves, before curly leaves formed (ii) 13 

when leaves just turned into curly; and (iii) mature leaves, after leaves were fully curly. Three biological 14 

replications were included at each stage. At least 100 mg of fresh leaves was immediately frozen in liquid 15 

nitrogen and crushed into a fine powder using a TissueLyser (Qiagen, Germany). Endogenous auxin was 16 

measured using a UHPLC-Q-Exactive (Thermo Fisher Scientific) system. Measurements were conducted as 17 

described by Kojima et al. (2009) and Shinozaki et al. (2015). 18 

 19 

Leaf water potential measurements 20 

Leaf water potential was measured using a pressure chamber. A leaflet from the same position was cut and 21 

immediately placed into the chamber. Pressure was gradually increased until water was exuded from the petiole. 22 

Six biological samples were tested.  23 

 24 

Statistical analysis  25 

Unless otherwise stated, the data are presented as the mean ± SE (standard error). Student’s t-test (at the 95 and 26 

99% significance levels) was used to analyze the significance level between two values with equal variance. Chi-27 

square (χ2) tests were performed using MS Excel 2016 to examine the goodness of fit between the expected and 28 

observed Mendelian ratio in the segregating F2 population of mutants backcrossed to the WT ‘Micro-Tom,’ and 29 

the degrees of freedom and expected Mendelian ratio used for monogenic traits were 1 and 3:1 (WT: mutant 30 
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Table 3 Segregation analysis of the curl mutants back-crossed to the wild-type ‘Micro-Tom’. 
 
Mutant 

linea 
F1

b 
WT: curly 

F2
b 

WT: curly 
χ2 valuec χ2 

referenced 
P-value Inheritance patterne 

curl-1 4:0 105:25 2.30 3.84 0.13 monogenic recessive 
curl-2 1:0 79:31 0.59 3.84 0.44 monogenic recessive 
curl-3 5:0 70:25 0.08 3.84 0.76 monogenic recessive 
curl-6 2:0 123:30 2.37 3.84 0.12 monogenic recessive 

 

a The curl mutants were crossed to the wild-type ‘Micro-Tom’. 
b The number of progeny exhibiting normal (WT) and curly leaf phenotype is shown. 
c χ2 value was calculated based on progeny segregation in the F2 population. 
d χ2 distribution in the table reference value, with probability >0.05, and degree of freedom 1. 
e Inheritance pattern of the curl mutants, estimated based on χ 2 value at 95% (P<0.05) significant level. 
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Table 4 The result of the allelism test among the curl mutants. 

Mutant line 
♀ 

Mutant line ♂ 
WT curl-1 curl-2 curl-3 curl-4 curl-6 

WT  normal normal normal normal normal 
curl-1 normal  n.d. n.d. n.d. curly 
curl-2 normal curly  n.d. n.d. curly 
curl-3 normal n.d. curly  curly curly 
curl-4 normal n.d. curly curly  curly 
curl-6 normal curly curly curly curly   

The allelism test was carried out by crossing all possible pairs and observing the results at the F1 generation. 
The F1 generation phenotype was evaluated visually by observing the presence of a curly leaf phenotype. 
Normal represents the wild-type phenotype 
Curly represents the curly leaf phenotype. 
n.d. not determined. 
♀, ♂: female recipient and male donor, respectively. 
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Table 6 Adaxial and abaxial pavement cell size the curl mutants in the curly part measured by a scanning electron 

microscope 

Line Pavement cell size (µm) Abaxial/adaxial pavement 
cell size ratio Adaxial Abaxial 

WT 43.36 ± 2.1 42.11 ± 3.4 0.97 
curl-1 36.04 ± 1.8 57.83 ± 6.4** 1.59** 
curl-2 36.90 ± 1.2 58.69 ± 4.1** 1.61** 
curl-6 38.07 ± 1.8 60.18 ± 1.3** 1.66** 

 
 

Line Pavement cell number (cell) Abaxial/adaxial pavement 
cell number ratio Adaxial Abaxial 

WT 1317.3 ± 49.5 1110.6 ± 70.8 0.84 
curl-1 1207.5 ± 80.6  1073.5 ± 65.2 0.89 
curl-2 1389.2 ± 105.2 1173.9 ± 26.9 0.85 
curl-6 1304.3 ± 73.6 1156.8 ± 59.6 0.89 

 
Values are means ± SE (n=9). The asterisks represent statistically significant differences in means with equal 
variants based on Student’s t-test (**P<0.01).  
The cell feature was measured at the mature leaf stage when the leaves were completely turned to curly, precisely in 
the same regions on adaxial and abaxial surfaces. 
The curl mutants showed a significantly larger abaxial/adaxial pavement cell size ratio compared to that of the wild-
type (WT). 
 

Legends to figures 

Fig. 1 Leaf morphology of the WT ‘Micro-Tom’ and three alleles of the curl mutants. 

(A-B) Mature leaf morphology of mature curl mutants in (A) adaxial and (B) abaxial view. The leaf images were 
captured from 2-month-old plants from the 5th leaflet. Scale bar: 2 cm. (C-D) Young leaf appearance of curl mutants. 
(C) adaxial and (D) abaxial view. The newly developed young leaves of the curl mutants were flat and 
indistinguishable from those of WT. Scale bar: 1 cm) (E) Representative of the curl mutant (curl-1) when grown in 
in vitro culture. Scale bar: 2 cm. The curly phenotype was not restored (F-G) Wild-type (F) and representative curl 
mutant (G, curl-1) grown under well-watered conditions in the greenhouse. Plant images were captured from 2- 
month-old plant. Scale bar: 1.5 cm. 

Fig. 2 Adaxial and abaxial surfaces of young (upper panel) and mature (bottom panel) tomato leaflets.  
 
(A) Adaxial (upper) surface of young tomato leaflets. (B) Abaxial (bottom) surface of young tomato leaflets. Young 
leaflets were detached from 1.5-month-old plants. (C) Adaxial (upper) surface of mature tomato leaflets. (D) Abaxial 
(bottom) surface of mature tomato leaflet. Mature leaflets were detached from the 5th leaflet of 2.5-month-old plants. 
Scale bar: upper panel, 3 cm; bottom panel, 2 cm. 
 
 

Fig. 3 Partial chromosome mapping result of the curl mutant locus. 
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The curl locus was found to associate with the marker 14109-151 on chromosome 9 in the F2 mapping population 
derived from the cross between S. lycopersicum cv. ‘Ailsa Craig’ x S. lycopersicum cv. ‘Micro-Tom’ curl-2. The 
marker information was obtained from the Kazusa DNA Research Institute AMF2 database 
(http://marker.kazusa.or.jp/). No such association was observed in other chromosomes (Supplementary Table S3). 

 

Fig. 4 Identification of SlLAX1 (Solyc09g01480.2) as the most plausible candidate gene responsible for the curl 
phenotype.  

Genome-wide allele frequency data were obtained by exome sequencing of BCF2 bulked segregants that show the 
curl mutant phenotype. To narrow down candidate efficiently, four mapping populations derived from independent 
curl alleles (curl-1, 2, 3, 6) were constructed and subjected to exome sequencing. In all four mapping populations, a 
strong association was commonly observed for mutations within the SlLAX1 (Solyc09g01480.2) gene, which is a 
homolog of the Arabidopsis AUXIN RESISTANT1 (AUX1) transporter gene. Black boxes indicate exons, transparent 
boxes indicate UTRs, and lines between boxes indicate introns. 

 

Fig. 5 Changes in protein amino acid sequence and SlLAX1 gene expression in curl mutants.  

 (A, B) A partial alignment of SlLAX1 cDNA sequence (A) or deduced protein amino acid sequence (B) among the 
tomato reference (SL2.50), wild-type Micro-Tom, curl-2, and curl-6. The mutation in curl-2 and curl-6 causes a 
premature stop codon, as shown by the red box (W262X). (C, D) A partial alignment of SlLAX1 cDNA sequence (C) 
or deduced protein amino acid sequence (D) among the tomato reference (SL2.50), wild-type Micro-Tom, curl-1, 
and curl-3. cDNA sequences were obtained by dideoxy sequencing (A, C). (E) Donor and acceptor splicing sites in 
intron 4 of the wild-type, curl-1, and curl-3 mutants. Square brackets indicate splicing sites. Double square brackets 
indicate alternative splicing site in the curl-1 and curl-3 mutants. The one-letter code indicates an amino acid. 
Uppercase indicates an exon, whereas lowercase indicates an intron sequence. The bold letter indicates a mutated 
sequence in intron 4 of the curl-1 and curl-3 mutants. The asterisk represents stop codon in the curl-1. (F) qRT-PCR 
analysis of SlLAX1 gene expression. qRT-PCR primers were designed to target downstream of the stop codon 
mutation in exon 6. The asterisks represent statistically significant differences in the mean with equal variants 
compared to the wild-type (WT) based on Student’s t-test (**P<0.01). SlActin gene was used as an internal control. 
The expression level of the curl-1, curl-2, and curl-6 mutants was relative to the wild-type (WT) expression.  
 

 
Fig. 6 TILLING screening results and confirmation of the presence of curly leaf phenotype, cDNA and amino acid 
sequence alignment of the new mutant allele, TOMJPW601-1/curl-7. 
 
(A) Polyacrylamide gel image of TILLING screening. The mutation in TOMJPW601-1/curl-7 is shown as an intense 
spot on the lanes both in IRD-700 (red circle) and IRD-800 (green circle). A single nucleotide change is shown on 
the sequence chromatogram (red arrowhead). (B) Whole-plant images of curl-6 (left); a representative of the curl 

allele obtained using forward genetics; (middle and right) confirmation of the presence of curly leaves in the new 
selected allele, curl-7, in the M3 generation. Plant images were captured from 2-month-old plants when the curly leaf 
phenotype progressed. Scale bar: 2 cm. (C) A partial alignment of SlLAX1 cDNA sequence among the tomato 
reference (SL2.50), wild-type ‘Micro-Tom’, and TOMJPW601-1/curl-7. Nucleic acid substitution in the curl-7 
mutant is shown by a gray highlight. (D) Partial protein amino acid sequence alignment of SlLAX1 
(Solyc09g01480.2) among the tomato reference (SL2.50), wild-type ‘Micro-Tom’, and TOMJPW601-1/curl-7. 
Mutation in curl-7 led to the conversion of tryptophan to a premature stop codon. The wild-type (WT) produced a 
411-a.a. product, whereas curl-7 produced only a 185-a.a. product. The premature stop codon is indicated by a red 
box. 
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Fig. 7 Adaxial and abaxial pavement cell in the WT and the curl mutants at the curly part. 
 
(A) The adaxial pavement cell size of WT and mutants was comparable Scale bar: 20 µm (B) The pavement cell size 
of all curl mutants in abaxial surface was significantly larger compared to that of wild-type.  Scale bar: 10 µm. (C) 
The adaxial and abaxial sides of the curly part of leaf that were subjected to the scanning electron microscope 
experiment. Images were captured using a scanning electron microscope with 400x magnification at precisely in the 
curly part both in adaxial and abaxial surfaces.  
 

Fig. 8 Relative expression of auxin-related genes which were reported to control leaf flatness, observed by qRT-PCR 
at young and mature leaf stages. 

(A-E) Relative expression of gene at young leaf stage (A) SlDof25 (B) SlDof28 (C) SlLCR (D) SlYUC1 (E) SlPNH 

(F) Adaxial specification gene SlRev (G-L) Relative expression of gene at mature leaf stage, when leaf completely 
turned to curly (G) SlDof25 (H) SlDof28 (I) SlLCR (J) SlYUC1 (K) SlPNH (L) Adaxial specification gene SlRev. 

Values are means ± SE (n=3). The asterisks represent statistically significant differences in means with equal variants 
compared to the wild-type (WT) based on Student’s t-test (*P<0.05, **P<0.01). SlActin gene was used as an internal 
control. The expression level of the curl-1, curl-2, and curl-6 mutants was relative by the wild-type (WT) expression.  
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