235 research outputs found

    Teaching Elementary Mathematics with Educational Robotics

    Get PDF
    Current education reforms call for engaging students in learning science, technology, engineering, and mathematics (STEM) in an integrative way. This critical case study of one fourth grade teacher investigated the use of educational robots (ER) not only for teaching coding, but as an instructional support in teaching mathematical concepts. To support teachers in teaching coding in an integrative and logical manner, our team developed the Collective Argumentation Learning and Coding (CALC) approach. The CALC approach consists of three elements: choice of task, coding content, and teacher support for argumentation. After a cohort of elementary teachers completed a professional development course, we followed them into their classrooms to support and document implementation of the CALC approach. Data for this case consisted of video recordings of two lessons, a Pre-interview, and Post-interview after each lesson. Research questions included: How does an elementary teacher use the CALC approach (integrative STEM approach) to teach mathematics concepts with ER? What are the teacher’s perspectives towards teaching mathematics with ER using an integrative STEM approach? Results from this critical case provide evidence that teachers can successfully integrate ER into the mathematics curriculum without losing coherence of mathematics topics and while remaining sensitive to students’ needs

    Characterization of MLO gene family in Rosaceae and gene expression analysis in Malus domestica

    Get PDF
    Background: Powdery mildew (PM) is a major fungal disease of thousands of plant species, including many cultivated Rosaceae. PM pathogenesis is associated with up-regulation of MLO genes during early stages of infection, causing down-regulation of plant defense pathways. Specific members of the MLO gene family act as PM-susceptibility genes, as their loss-of-function mutations grant durable and broad-spectrum resistance. Results: We carried out a genome-wide characterization of the MLO gene family in apple, peach and strawberry, and we isolated apricot MLO homologs through a PCR-approach. Evolutionary relationships between MLO homologs were studied and syntenic blocks constructed. Homologs that are candidates for being PM susceptibility genes were inferred by phylogenetic relationships with functionally characterized MLO genes and, in apple, by monitoring their expression following inoculation with the PM causal pathogen Podosphaera leucotricha. Conclusions: Genomic tools available for Rosaceae were exploited in order to characterize the MLO gene family. Candidate MLO susceptibility genes were identified. In follow-up studies it can be investigated whether silencing or a loss-of-function mutations in one or more of these candidate genes leads to PM resistance

    Electron Tunneling through Pseudomonas aeruginosa Azurins on SAM Gold Electrodes

    Get PDF
    Robust voltammetric responses were obtained for wild-type and Y72F/H83Q/Q107H/Y108F azurins adsorbed on CH_3(CH_2)_nSH:HO(CH_2)_mSH (n=m=4,6,8,11; n=13,15 m=11) self-assembled monolayer (SAM) gold electrodes in acidic solution (pH 4.6) at high ionic strengths. Electron-transfer (ET) rates do not vary substantially with ionic strength, suggesting that the SAM methyl headgroup binds to azurin by hydrophobic interactions. The voltammetric responses for both proteins at higher pH values (>4.6 to 11) also were strong. A binding model in which the SAM hydroxyl headgroup interacts with the Asn47 carboxamide accounts for the relatively strong coupling to the copper center that can be inferred from the ET rates. Of particular interest is the finding that rate constants for electron tunneling through n = 8, 13 SAMs are higher at pH 11 than those at pH 4.6, possibly owing to enhanced coupling of the SAM to Asn 47 caused by deprotonation of nearby surface residues

    Nanodelivery of nucleic acids

    Get PDF
    Funding: This work was supported by the European Research Council (ERC) Starting Grant (ERC-StG-2019-848325 to J. Conde) and the Fundação para a Ciência e a Tecnologia FCT Grant (PTDC/BTM-MAT/4738/2020 to J. Conde). J.S. acknowledges US National Institute of Health (NIH) grants (R01CA200900, R01HL156362 and R01HL159012), the US DoD PRCRP Idea Award with Special Focus (W81XWH1910482), the Lung Cancer Discovery Award from the American Lung Association and the Innovation Discovery Grants award from the Mass General Brigham. H.L., D.Y. and X.Z. were supported by the National Key R&D Program of China (no. 2020YFA0710700), the National Natural Science Foundation of China (nos 21991132, 52003264, 52021002 and 52033010) and the Fundamental Research Funds for the Central Universities (no. WK2060000027).There is growing need for a safe, efficient, specific and non-pathogenic means for delivery of gene therapy materials. Nanomaterials for nucleic acid delivery offer an unprecedented opportunity to overcome these drawbacks; owing to their tunability with diverse physico-chemical properties, they can readily be functionalized with any type of biomolecules/moieties for selective targeting. Nucleic acid therapeutics such as antisense DNA, mRNA, small interfering RNA (siRNA) or microRNA (miRNA) have been widely explored to modulate DNA or RNA expression Strikingly, gene therapies combined with nanoscale delivery systems have broadened the therapeutic and biomedical applications of these molecules, such as bioanalysis, gene silencing, protein replacement and vaccines. Here, we overview how to design smart nucleic acid delivery methods, which provide functionality and efficacy in the layout of molecular diagnostics and therapeutic systems. It is crucial to outline some of the general design considerations of nucleic acid delivery nanoparticles, their extraordinary properties and the structure–function relationships of these nanomaterials with biological systems and diseased cells and tissues.publishersversionpublishe

    Baseline Q-Wave Surpasses Time From Symptom Onset as a Prognostic Marker in ST-Segment Elevation Myocardial Infarction Patients Treated With Primary Percutaneous Coronary Intervention

    Get PDF
    ObjectivesWe assessed the incremental value of baseline Q waves over time from symptom onset as a marker of clinical outcome in ST-segment elevation myocardial infarction (STEMI).BackgroundTime from symptom onset is a central focus in STEMI patients. The presence of Q waves on the baseline electrocardiogram (ECG) has been suggested to be of incremental value to time from symptom onset in evaluating clinical outcomes.MethodsWe evaluated baseline Q waves and ST-segment resolution 30 min after primary percutaneous intervention (PCI) ECGs in 4,530 STEMI patients without prior infarction. Additionally, peak biomarkers; 90-day mortality; and the composite of death, congestive heart failure (CHF), or cardiogenic shock were assessed.ResultsFifty-six percent of patients had baseline Q waves: they were older, more frequently male and diabetic, and had a more advanced Killip class. Patients with baseline Q waves had greater mortality and a higher composite rate of death, CHF, and shock versus patients without baseline Q waves at 90 days (5.3% vs. 2.1% and 12.1% vs. 4.8%, respectively, both p < 0.001). Complete ST-segment resolution was highest, whereas 90-day mortality and the composite outcome were lowest among those randomized ≤3 h without baseline Q waves. After multivariable adjustment, baseline Q-wave but not time from symptom onset was significantly associated with a 78% relative increase in the hazard of 90-day mortality and a 90% relative increase in the hazard of death, shock, and CHF.ConclusionsBaseline Q waves in STEMI patients treated with primary PCI provide an independent prognostic marker of clinical outcome. These data might be useful in designing future clinical trials as well as in evaluating patients for triage and potential transfer for planned primary PCI. (Pexelizumab in Conjunction With Angioplasty in Acute Myocardial Infarction [APEX-AMI]; NCT00091637

    Modeled Health and Economic Impact of Team-Based Care for Hypertension

    Get PDF
    IntroductionTeam-based interventions for hypertension care have been widely studied and shown effective in improving hypertension outcomes. Few studies have evaluated long-term effects of these interventions; none have assessed broad-scale implementation. This study estimates the prospective health, economic, and budgetary impact of universal adoption of a team-based care intervention model that targets people with treated but uncontrolled hypertension in the U.S.MethodsAnalysis was conducted in 2014−2015 using a microsimulation model, constructed with various data sources from 1948 to 2014, designed to evaluate prospective cardiovascular disease (CVD)−related interventions in the U.S. population. Ten-year primary outcomes included prevalence of uncontrolled hypertension; incident myocardial infarction, stroke, CVD events, and CVD-related mortality; intervention and net medical costs by payer; productivity; and quality-adjusted life years.ResultsAbout 4.7 million (13%) fewer people with uncontrolled hypertension and 638,000 prevented cardiovascular events would be expected over 10 years. Assuming 525perenrollee,implementationwouldcostpayers525 per enrollee, implementation would cost payers 22.9 billion, but 25.3billionwouldbesavedinavertedmedicalcosts.EstimatednetcostsavingsforMedicareapproached25.3 billion would be saved in averted medical costs. Estimated net cost savings for Medicare approached 5.8 billion. Net costs were especially sensitive to intervention costs, with break-even thresholds of 300(private),300 (private), 450 (Medicaid), and $750 (Medicare).ConclusionsNationwide adoption of team-based care for uncontrolled hypertension could have sizable effects in reducing CVD burden. Based on the study’s assumptions, the policy would be cost saving from the perspective of Medicare and may prove to be cost effective from other payers’ perspectives. Expected net cost savings for Medicare would more than offset expected net costs for all other insurers

    Pharmacokinetic and behavioral characterization of a longterm antipsychotic delivery system in rodents and rabbits

    Get PDF
    Rationale: Non-adherence with medication remains the major correctable cause of poor outcome in schizophrenia. However, few treatments have addressed this major determinant of outcome with novel long-term delivery systems. Objectives: The aim of this study was to provide biological proof of concept for a long-term implantable antipsychotic delivery system in rodents and rabbits. Materials and methods: Implantable formulations of haloperidol were created using biodegradable polymers. Implants were characterized for in vitro release and in vivo behavior using prepulse inhibition of startle in rats and mice, as well as pharmacokinetics in rabbits. Results: Behavioral measures demonstrate the effectiveness of haloperidol implants delivering 1 mg/kg in mice and 0.6 mg/kg in rats to block amphetamine (10 mg/kg) in mice or apomorphine (0.5 mg/kg) in rats. Additionally, we demonstrate the pattern of release from single polymer implants for 1 year in rabbits. Conclusions: The current study suggests that implantable formulations are a viable approach to providing long-term delivery of antipsychotic medications in vivo using animal models of behavior and pharmacokinetics. In contrast to depot formulations, implantable formulations could last 6 months or longer. Additionally, implants can be removed throughout the delivery interval, offering a degree of reversibility not available with depot formulations

    Extensive Variation in Chromatin States Across Humans

    Get PDF
    The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans

    Putative adverse outcome pathways for female reproductive disorders to improve testing and regulation of chemicals

    Get PDF
    Modern living challenges female reproductive health. We are witnessing a rise in reproductive disorders and drop in birth rates across the world. The reasons for these manifestations are multifaceted and most likely include continuous exposure to an ever-increasing number of chemicals. The cause-effect relationships between chemical exposure and female reproductive disorders, however, have proven problematic to determine. This has made it difficult to assess the risks chemical exposures pose to a woman's reproductive development and function. To address this challenge, this review uses the adverse outcome pathway (AOP) concept to summarize current knowledge about how chemical exposure can affect female reproductive health. We have a special focus on effects on the ovaries, since they are essential for lifelong reproductive health in women, being the source of both oocytes and several reproductive hormones, including sex steroids. The AOP framework is widely accepted as a new tool for toxicological safety assessment that enables better use of mechanistic knowledge for regulatory purposes. AOPs equip assessors and regulators with a pragmatic network of linear cause-effect relationships, enabling the use of a wider range of test method data in chemical risk assessment and regulation. Based on current knowledge, we propose ten putative AOPs relevant for female reproductive disorders that can be further elaborated and potentially be included in the AOPwiki. This effort is an important step towards better safeguarding the reproductive health of all girls and women.Peer reviewe

    USP27X variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms

    Get PDF
    Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.</p
    corecore