17 research outputs found

    Maternal exposure to life events during pregnancy and congenital heart disease in offspring: a case-control study in a Chinese population

    Get PDF
    Background: Previous studies have suggested that maternal stress could increase the risk of some adverse pregnancy outcomes, but evidence on congenital heart disease (CHD) is limited. We aimed to explore the association between maternal exposure to life events during pregnancy and CHD in offspring. Methods: The data was based on an unmatched case-control study about CHD conducted in Shaanxi province of China from 2014 to 2016. We included 2280 subjects, 699 in the case group and 1581 in the control group. The cases were infants or fetuses diagnosed with CHD, and the controls were infants without any birth defects. The life events were assessed by the Life Events Scale for Pregnant Women, and were divided into positive and negative events for synchronous analysis. A directed acyclic graph was drawn to screen the confounders. Logistic regression was employed to estimate the odds ratio and 95% confidence interval for the effects of life events on CHD. Results: After controlling for the potential confounders, the pregnant women experiencing the positive events during pregnancy had lower risk of CHD in offspring than those without positive events (OR = 0.38, 95%CI: 0.30 ~ 0.48). The risk of CHD in offspring could increase by 62% among the pregnant women experiencing the negative events compared to those without (OR = 1.62, 95%CI: 1.29 ~ 2.03). Both effects showed a certain dose-response association. Besides, the positive events could weaken the risk impact of negative events on CHD. Conclusion: It may suggest that maternal exposure to negative life events could increase the risk of CHD in offspring, while experiencing positive events could play a potential protective role

    Low Cell-Matrix Adhesion Reveals Two Subtypes of Human Pluripotent Stem Cells.

    Get PDF
    We show that a human pluripotent stem cell (hPSC) population cultured on a low-adhesion substrate developed two hPSC subtypes with different colony morphologies: flat and domed. Notably, the dome-like cells showed higher active proliferation capacity and increased several pluripotent genes' expression compared with the flat monolayer cells. We further demonstrated that cell-matrix adhesion mediates the interaction between cell morphology and expression of KLF4 and KLF5 through a serum response factor (SRF)-based regulatory double loop. Our results provide a mechanistic view on the coupling among adhesion, stem cell morphology, and pluripotency, shedding light on the critical role of cell-matrix adhesion in the induction and maintenance of hPSC

    Maintenance of Nucleolar Homeostasis by CBX4 Alleviates Senescence and Osteoarthritis

    No full text
    Summary: CBX4, a component of polycomb repressive complex 1 (PRC1), plays important roles in the maintenance of cell identity and organ development through gene silencing. However, whether CBX4 regulates human stem cell homeostasis remains unclear. Here, we demonstrate that CBX4 counteracts human mesenchymal stem cell (hMSC) aging via the maintenance of nucleolar homeostasis. CBX4 protein is downregulated in aged hMSCs, whereas CBX4 knockout in hMSCs results in destabilized nucleolar heterochromatin, enhanced ribosome biogenesis, increased protein translation, and accelerated cellular senescence. CBX4 maintains nucleolar homeostasis by recruiting nucleolar protein fibrillarin (FBL) and heterochromatin protein KRAB-associated protein 1 (KAP1) at nucleolar rDNA, limiting the excessive expression of rRNAs. Overexpression of CBX4 alleviates physiological hMSC aging and attenuates the development of osteoarthritis in mice. Altogether, our findings reveal a critical role of CBX4 in counteracting cellular senescence by maintaining nucleolar homeostasis, providing a potential therapeutic target for aging-associated disorders. : Ren et al. identify a geroprotective role for CBX4 in human mesenchymal stem cells (hMSCs) by maintaining nucleolar homeostasis. Overexpression of CBX4 alleviates hMSC aging and attenuates the development of osteoarthritis, highlighting a potential avenue for the use of CBX4 gene therapy vector in treating aging and aging-related disorders. Keywords: CBX4, stem cell, aging, nucleolus, rDNA, epigenetics, heterochromatin, osteoarthritis, CRISPR/Cas9, gene editin

    Epimedium sempervirens Nakai var. multifoliolatum T. Shimizu

    No full text
    原著和名:ソハヤキイカリサウ科名: Berberidaceae = メギ科採集地: 三重県 員弁郡 藤原岳北側の沢 (伊勢 員弁郡 藤原岳北側の沢)採集日: 1990/4/8採集者: 萩庭丈壽整理番号: JH002421国立科学博物館整理番号: TNS-VS-952421備考: 石灰岩
    corecore