360 research outputs found
Multifactorial analysis of human blood cell responses to clinical total body irradiation
Multiple regression analysis techniques are used to study the effects of therapeutic radiation exposure, number of fractions, and time on such quantal responses as tumor control and skin injury. The potential of these methods for the analysis of human blood cell responses is demonstrated and estimates are given of the effects of total amount of exposure and time of protraction in determining the minimum white blood cell concentration observed after exposure of patients from four disease groups
Treatment of tumours with the combination of WR-2721 and cis-dichlorodiammineplatinum (II) or cyclophosphamide.
The ability of WR-2721 [S-2(3-aminopropylamino)ethyl-phosporothioic acid] to selectively protect the host against the toxic effects of multiple doses of cis-dichlorodiammineplatinum [cis-Pt] or cyclophosphamide [CY] has been studied in mice and rats bearing 3 different tumours. Selective protection against cis-Pt induced nephrotoxicity has been demonstrated under all conditions studied, with the extent of protection being inversely related to the size of the cis-Pt dose. For example, pre-treatment with 200 mg/kg of WR-2721 30 min before each weekly dose of 2 mg/kg of cis-Pt allows the administration of this cytotoxic agent for 3 times longer before nephrotoxic injury. In none of these studies was there tumour protection. The same pattern was observed with CY, but quantitation of the extent of marrow protection was not possible for the multiple treatment studies, due to the longer latent period between induced and observed death with this drug. We conclude, therefore, that for both of these drugs, selective protection of the kidney and marrow is not only maintained under conditions of multiple treatment, but actually enhanced due to the need for smaller doses of cytotoxic agents in these protocols
Recommended from our members
Interspecies comparison of the tissue distribution of WR-2721, a radioprotective drug
Pre-irradiation intravenous administration of the radioprotective drug S- 2-[3-aminopropylamino]ethylphosphorothioic acid (WR-2721) has potential value in radiotherapy because it doubles the radiation resistance of normal mouse tissues while affording only minimal protection to tumors. Deficient deposition of WR- 2721 in tumor tissue has recently been demonstrated and this is thought to be a major reason for the preferential protection of normal tissues by the drug. Data originally obtained in studies using the mouse and rat indicated that the tissue distribution of WR-2721 was possibly more closely related to dose per unit surface area than to dose per unit weight. To test this hypothesis an interspecies comparison of the tissue distribution of S-labeled WR-2721 was carried out in normal mice, rats, rabbits, and dogs at 15 and 30 minutes after intravenous administration. Results suggest that the surface area and body weight exert equal effects on the tissue concentration of WR-2721. The results further suggest that lower absolute doses of WR-2721 in the human, possibly as low as 20 mg/kg, may provide a radioprotective effect equivalent to that produced from 100 mg/kg in the mouse, i.e., a 50 to 80 percent increase in radiation resistance (CH
A pilot open label, single dose trial of fenobam in adults with fragile X syndrome
ObjectiveA pilot open label, single dose trial of fenobam, an mGluR5 antagonist, was conducted to provide an initial evaluation of safety and pharmacokinetics in adult males and females with fragile X syndrome (FXS).MethodsTwelve subjects, recruited from two fragile X clinics, received a single oral dose of 50-150 mg of fenobam. Blood for pharmacokinetic testing, vital signs and side effect screening was obtained at baseline and numerous time points for 6 h after dosing. Outcome measures included prepulse inhibition (PPI) and a continuous performance test (CPT) obtained before and after dosing to explore the effects of fenobam on core phenotypic measures of sensory gating, attention and inhibition.ResultsThere were no significant adverse reactions to fenobam administration. Pharmacokinetic analysis showed that fenobam concentrations were dose dependent but variable, with mean (SEM) peak values of 39.7 (18.4) ng/ml at 180 min after the 150 mg dose. PPI met a response criterion of an improvement of at least 20% over baseline in 6 of 12 individuals (4/6 males and 2/6 females). The CPT did not display improvement with treatment due to ceiling effects.ConclusionsClinically significant adverse effects were not identified in this study of single dose fenobam across the range of dosages utilised. The positive effects seen in animal models of FXS treated with fenobam or other mGluR5 antagonists, the apparent lack of clinically significant adverse effects, and the potential beneficial clinical effects seen in this pilot trial support further study of the compound in adults with FXS
Nicotine Promotes Tumor Growth and Metastasis in Mouse Models of Lung Cancer
Nicotine is the major addictive component of tobacco smoke. Although nicotine is generally thought to have limited ability to initiate cancer, it can induce cell proliferation and angiogenesis in a variety of systems. These properties might enable nicotine to facilitate the growth of tumors already initiated. Here we show that nicotine significantly promotes the progression and metastasis of tumors in mouse models of lung cancer. This effect was observed when nicotine was administered through intraperitoneal injections, or through over-the-counter transdermal patches.In the present study, Line1 mouse adenocarcinoma cells were implanted subcutaneously into syngenic BALB/c mice. Nicotine administration either by intraperitoneal (i.p.) injection or transdermal patches caused a remarkable increase in the size of implanted Line1 tumors. Once the tumors were surgically removed, nicotine treated mice had a markedly higher tumor recurrence (59.7%) as compared to the vehicle treated mice (19.5%). Nicotine also increased metastasis of dorsally implanted Line1 tumors to the lungs by 9 folds. These studies on transplanted tumors were extended to a mouse model where the tumors were induced by the tobacco carcinogen, NNK. Lung tumors were initiated in A/J mice by i.p. injection of NNK; administration of 1 mg/kg nicotine three times a week led to an increase in the size and the number of tumors formed in the lungs. In addition, nicotine significantly reduced the expression of epithelial markers, E-Cadherin and beta-Catenin as well as the tight junction protein ZO-1; these tumors also showed an increased expression of the alpha(7) nAChR subunit. We believe that exposure to nicotine either by tobacco smoke or nicotine supplements might facilitate increased tumor growth and metastasis.Our earlier results indicated that nicotine could induce invasion and epithelial-mesenchymal transition (EMT) in cultured lung, breast and pancreatic cancer cells. This study demonstrates for the first time that administration of nicotine either by i.p. injection or through over-the-counter dermal patches can promote tumor growth and metastasis in immunocompetent mice. These results suggest that while nicotine has only limited capacity to initiate tumor formation, it can facilitate the progression and metastasis of tumors pre-initiated by tobacco carcinogens
Emergent Properties of Tumor Microenvironment in a Real-life Model of Multicell Tumor Spheroids
Multicellular tumor spheroids are an important {\it in vitro} model of the
pre-vascular phase of solid tumors, for sizes well below the diagnostic limit:
therefore a biophysical model of spheroids has the ability to shed light on the
internal workings and organization of tumors at a critical phase of their
development. To this end, we have developed a computer program that integrates
the behavior of individual cells and their interactions with other cells and
the surrounding environment. It is based on a quantitative description of
metabolism, growth, proliferation and death of single tumor cells, and on
equations that model biochemical and mechanical cell-cell and cell-environment
interactions. The program reproduces existing experimental data on spheroids,
and yields unique views of their microenvironment. Simulations show complex
internal flows and motions of nutrients, metabolites and cells, that are
otherwise unobservable with current experimental techniques, and give novel
clues on tumor development and strong hints for future therapies.Comment: 20 pages, 10 figures. Accepted for publication in PLOS One. The
published version contains links to a supplementary text and three video
file
Radioprotectors and Mitigators of Radiation-Induced Normal Tissue Injury
The article reviews agents in clinical use or in development as radioprotectors and mitigators of radiation-induced normal tissue injury
Synthesis and characterization of hybrid nanostructures
There has been significant interest in the development of multicomponent nanocrystals formed by the assembly of two or more different materials with control over size, shape, composition, and spatial orientation. In particular, the selective growth of metals on the tips of semiconductor nanorods and wires can act to couple the electrical and optical properties of semiconductors with the unique properties of various metals. Here, we outline our progress on the solution-phase synthesis of metal-semiconductor heterojunctions formed by the growth of Au, Pt, or other binary catalytic metal systems on metal (Cd, Pb, Cu)-chalcogenide nanostructures. We show the ability to grow the metal on various shapes (spherical, rods, hexagonal prisms, and wires). Furthermore, manipulating the composition of the metal nanoparticles is also shown, where PtNi and PtCo alloys are our main focus. The magnetic and electrical properties of the developed hybrid nanostructures are shown
- …