10 research outputs found

    Spectral Tunability, Luminescence Enhancement, and Temperature Sensitivity of Sb<sup>3+</sup>-Doped Bismuth-Based Halide Emission Crystals for Anti-Counterfeiting Applications

    No full text
    The synthesis of sustainable luminescent materials with simplicity, low energy consumption, and nontoxicity is of great importance in the field of chemistry and materials science. In this study, a room temperature evaporation method was employed to synthesize Sb3+-doped bismuth-based halide emission crystals, allowing for investigation of spectral tuning, luminescence enhancement, and temperature sensitivity. By substitution of Rb+ with varying concentrations of Cs+ in Rb3BiCl6 (RBC), the luminescent color of the crystals can be tuned from orange to yellow. The resulting alloyed yellow-emitting crystals were identified as Rb2CsBiCl6 (RCBC). Remarkably, when one-third of the Rb+ ions were replaced by Cs+ in the RBC, the crystals exhibited improved thermal stability and a 20-fold increase in luminescence intensity. The temperature-sensitive behavior was observed for RBC:Sb, with emission shifting from 590 to 574 nm upon heating while the yellow emission of RCBC:Sb exhibited no significant peak shift with temperature. Notably, the yellow emission of RBC:Sb could be reversibly converted back to orange light upon cooling to room temperature. In contrast, RCBC:Sb exhibited no significant peak shift with temperature. The differential temperature sensitivity between RBC:Sb and RCBC:Sb offers potential applications in anti-counterfeiting measures

    Multiplex Detection of Five Canine Viral Pathogens for Dogs as Laboratory Animals by the Luminex xTAG Assay

    No full text
    More and more dogs have been used as a disease model for medical research and drug safety evaluation. Therefore, it is important to make sure that the dogs and their living houses are special pathogen free. In this study, the development and evaluation of a Luminex xTAG assay for simultaneous detection of five canine viruses was carried out, including canine distemper virus, canine parvovirus, canine parainfluenza virus, canine adenovirus, and rabies virus. Assay specificity was accomplished by targeting conserved genomic regions for each virus. Hybridization between multiplexed PCR products and the labeled fluorescence microspheres was detected in a high throughput format using a Luminex fluorescence reader. The Luminex xTAG assay showed high sensitivity with limits of detection for the five viruses was 100 copies/μL. Specificity of the xTAG assay showed no amplification of canine coronavirus, pseudorabies virus and canine influenza virus indicating that the xTAG assay was specific. Seventy-five clinical samples were tested to evaluate the xTAG assay. The results showed 100% coincidence with the conventional PCR method. This is the first report of a specific and sensitive multiplex Luminex xTAG assay for simultaneous detection of five major canine viral pathogens. This assay will be a useful tool for quality control and environmental monitoring for dogs used as laboratory animals, may even be applied in laboratory epidemiological investigations

    Molecular Characterization and Phylogenetic Analysis of a Variant Recombinant Porcine Epidemic Diarrhea Virus Strain in China

    No full text
    Since 2010, a variant of porcine epidemic diarrhea virus (PEDV) has re-emerged in several provinces of China, resulting in severe economic losses for the pork industry. Here, we isolated and identified a variant PEDV strain, SC-YB73, in Guangdong Province, China. The pathological observations of jejunum showed atrophy of villi and edema in the lamina propria. The sequence analysis of the viral genome identified a six-nucleotide insertion in the E gene, which has not previously been detected in PEDV strains. Furthermore, 50 nucleotide sites were unique in SC-YB73 compared with 27 other PEDV strains. The phylogenetic analysis based on the complete genome showed that SC-YB73 was clustered in variant subgroup GII-a, which is widely prevalent in the Chinese pig population. The recombination analysis suggested that SC-YB73 originated from the recombination of GDS47, US PEDV prototype-like strains TW/Yunlin550/2018, and COL/Cundinamarca/2014. In the present study, we isolated and genetically characterized a variant PEDV strain, thus providing essential information for the control of PED outbreaks in China

    Rapid detection of three rabbit pathogens by use of the Luminex x-TAG assay

    No full text
    Abstract Background Domestic rabbits especially New Zealand white rabbits play an important role in biological research. The disease surveillance and quality control are essential to guarantee the results of animal experiments performed on rabbits. Rabbit hemorrhagic disease virus, rabbit rotavirus and Sendai virus are the important pathogens that needed to be eliminated. Rapid and sensitive method focus on these three viruses should be established for routine monitoring. The Luminex x-TAG assay based on multiplex PCR and fluorescent microsphere is a fast developing technology applied in high throughput detection. Specific primers modified with oligonucleotide sequence/biotin were used to amplify target fragments. The conjugation between oligonucleotide sequence of the PCR products and the MagPlex-TAG microspheres was specific without any cross-reaction, and the hybridization products could be analyzed using the Luminex 200 analyzer instrument. Recombinant plasmids were constructed to estimate the detection limit of the viruses. Furthermore, 40 clinical samples were used to evaluate the efficiency of this multiplex PCR based Luminex x-TAG assay. Results According to the results, this new method showed high specificity and good stability. Assessed by the recombinant plasmids, the detection limit of three viruses was 100copies/μl. Among 40 clinical specimens, 18 specimens were found positive, which was completely concordant with the conventional PCR method. Conclusions The new developed Luminex x-TAG assay is an accurate, high throughput method for rapid detection of three important viruses of rabbits
    corecore