11 research outputs found

    Evolution and Comprehensive Analysis of DNaseI Hypersensitive Sites in Regulatory Regions of Primate Brain-Related Genes

    Get PDF
    How the human brain differs from those of non-human primates is largely unknown and the complex drivers underlying such differences at the genomic level remain unclear. In this study, we selected 243 brain-related genes, based on Gene Ontology, and identified 184,113 DNaseI hypersensitive sites (DHSs) within their regulatory regions. To performed comprehensive evolutionary analyses, we set strict filtering criteria for alignment quality and filtered 39,132 DHSs for inclusion in the investigation and found that 2,397 (~6%) exhibited evidence of accelerated evolution (aceDHSs), which was a much higher proportion that DHSs genome-wide. Target genes predicted to be regulated by brain-aceDHSs were functionally enriched for brain development and exhibited differential expression between human and chimpanzee. Alignments indicated 61 potential human-specific transcription factor binding sites in brain-aceDHSs, including for CTCF, FOXH1, and FOXQ1. Furthermore, based on GWAS, Hi-C, and eQTL data, 16 GWAS SNPs, and 82 eQTL SNPs were in brain-aceDHSs that regulate genes related to brain development or disease. Among these brain-aceDHSs, we confirmed that one enhanced the expression of GPR133, using CRISPR-Cas9 and western blotting. The GPR133 gene is associated with glioblastoma, indicating that SNPs within DHSs could be related to brain disorders. These findings suggest that brain-related gene regulatory regions are under adaptive evolution and contribute to the differential expression profiles among primates, providing new insights into the genetic basis of brain phenotypes or disorders between humans and other primates

    SNP_in_haDHS(from 1000 human genome project)

    No full text
    This file showed all the SNPs(data from 1000 human genome project) that located in TRIM haDHSs, with their information such as the positions of SNPs and allele frequencies

    Data from: Positive selection of the TRIM family regulatory region in primate genomes

    No full text
    Viral selection pressure has acted on restriction factors that play an important role in the innate immune system by inhibiting the replication of viruses during primate evolution. Tripartite motif-containing (TRIM) family members are some of these restriction factors. It is becoming increasingly clear that gene expression differences, rather than protein-coding regions changes, could play a vital role in the anti-retroviral immune mechanism. Increasingly, recent studies have created genome-scale catalogues of DNase I hypersensitive sites (DHSs), which demark potentially functional regulatory DNA. To improve our understanding of the molecular evolution mechanism of antiviral differences between species, we leveraged 14 130 DHSs derived from 145 cell types to characterize the regulatory landscape of the TRIM region. Subsequently, we compared the alignments of the DHSs across six primates and found 375 DHSs that are conserved in non-human primates but exhibit significantly accelerated rates of evolution in the human lineage (haDHSs). Furthermore, we discovered 31 human-specific potential transcription factor motifs within haDHSs, including the KROX and SP1, that both interact with HIV-1. Importantly, the corresponding haDHS was correlated with antiviral factor TRIM23. Thus, our results suggested that some viruses may contribute, through regulatory DNA differences, to organismal evolution by mediating TRIM gene expression to escape immune surveillance

    Supplementary Legends from Positive selection of the TRIM family regulatory region in primate genomes

    No full text
    Viral selection pressure has acted on restriction factors that play an important role in innate immune system by inhibiting the replication of viruses during primate evolution. Tripartite motif-containing (TRIM) family members are some of these restriction factors. It is becoming increasingly clear that gene expression differences, rather than protein-coding regions changes, could play a vital role in the anti-retroviral immune mechanism. Increasingly, recent studies have created genome-scale catalogues of DNase I hypersensitive sites (DHSs), which demark potentially functional regulatory DNA. To improve our understanding of the molecular evolution mechanism of antiviral differences between species, we leveraged 14 130 DHSs derived from 145 cell types to characterize the regulatory landscape of the TRIM region. Subsequently, we compared the alignments of the DHSs across six primates and found 375 DHSs that are conserved in non-human primates but exhibit significantly accelerated rates of evolution in the human lineage (haDHSs). Furthermore, we discovered 31 human-specific potential transcription factor motifs within haDHSs, including the <i>KROX</i> and <i>SP1</i>, that both interact with <i>HIV-1</i>. Importantly, the corresponding haDHS was correlated with antiviral factor <i>TRIM23</i>. Thus, our results suggested that some viruses may contribute, through regulatory DNA differences, to organismal evolution by mediating TRIM gene expression to escape immune surveillance
    corecore