172 research outputs found

    Genetic variations underlying Gilbert syndrome and HBV infection outcomes: a cross-sectional study

    Get PDF
    Background: Constant cellular damage causes a poor prognosis of hepatitis B virus (HBV) infection. Accumulating evidence indicates the cytoprotective properties of bilirubin. Here, we investigated the association of UDP glucuronosyltransferase family 1 member A1 (UGT1A1), the genetic cause of Gilbert syndrome (GS), a common condition of mild unconjugated bilirubinemia, with HBV infection outcomes.Methods: Patients (n = 2,792) with unconjugated hyperbilirubinemia were screened for HBV infection and host UGT1A1 variations in Ruijin Hospital from January 2015 to May 2023, and those with confirmed HBV exposure were included. The promoter/exons/adjacent intronic regions of UGT1A1 were sequenced. HBV infection outcomes were compared between hosts with wild-type and variant-type UGT1A1. The effect magnitudes of UGT1A1 variations were evaluated using three classification approaches.Results: In total, 175 patients with confirmed HBV exposure were recruited for final analysis. Age, gender, level of HBV serological markers, and antiviral treatment were comparable between UGT1A1 wild-type and disease-causing variation groups. Five known disease-causing mutations (UGT1A1*28, UGT1A1*6, UGT1A1*27, UGT1A1*63, and UGT1A1*7) were detected. The incidence of cirrhosis or hepatocellular carcinoma (LC/HCC) was significantly lower in UGT1A1 variant hosts than in UGT1A1 wild-type hosts (13.14% vs. 78.95%, p < 0.0001). The rarer the UGT1A1 variation a patient possessed, the higher the age at which LC/HCC was diagnosed (R = 0.34, p < 0.05). In contrast, patients without cirrhosis achieving HBsAg clearance were identified only in the UGT1A1 variant group (12.32% vs. 0%).Conclusion: The findings of this study provide insights into the association between preexisting genetically mild bilirubin elevation and viral infection outcome. We showed that the accumulation of UGT1A1 variants or the rarity of the variation is associated with a better prognosis, and the effect magnitude correlates with UGT1A1 deficiency. This study demonstrates the therapeutic potential of host UGT1A1 variations underlying GS against HBV infection outcomes

    The Relationship of Ultra-Low Permeability Sandstone Aspect Ratio With Porosity, Permeability

    Get PDF
    The ultra-low permeability sandstone reservoir has large aspect ratio which significantly influences the multi-phase percolation characteristic. The ratio could be accurately measured by rate-controlled mercury porosimetry, but the testing technology is expensive, time-consuming and core-contaminating. There is not a simple effective method to describe the aspect ratio. The pores of the ultra-low permeability sandstone are mainly connected by the very long narrow throats, which could be advantageously simulated by the compound capillary bundles model. The analytical expressions of porosity and permeability about major pore structure parameters are established based on the model for the tight porous media. After solving the two expressions, the relationship between aspect ratio and parameter combination of porosity, permeability is obtained for the ultra-low permeable sandstone. Then the relation is fitted in this article using many previous published rate-controlled mercury data on compact sandstone and the relevance is strong, which proves that aspect ratio of tight rock is able to be calculated with its porosity and permeability.Key words: Ultra-low permeability sandstone; Aspect ratio; Pore; Throat; Porosity; Permeabilit

    Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: insights from a loess-paleosol sequence in the Ili Basin

    Get PDF
    The extensive loess deposits of the Eurasian midlatitudes provide important terrestrial archives of Quaternary climatic change. As yet, however, loess records in Central Asia are poorly understood. Here we investigate the grain size and magnetic characteristics of loess from the Nilka (NLK) section in the Ili Basin of eastern Central Asia. Weak pedogenesis suggested by frequency-dependent magnetic susceptibility (chi fd%) and magnetic susceptibility (MS) peaks in primary loess suggest that MS is more strongly influenced by allogenetic magnetic minerals than pedogenesis, and may therefore be used to indicate wind strength. This is supported by the close correlation between variations in MS and proportions of the sand-sized fraction. To further explore the temporal variability in dust transport patterns, we identified three grain size end-members (EM1, mode size 47.5 mu m; EM2, 33.6 mu m; EM3, 18.9 mu m) which represent distinct aerodynamic environments. EM1 and EM2 are inferred to represent grain size fractions transported from proximal sources in short-term, near-surface suspension during dust outbreaks. EM3 appears to represent a continuous background dust fraction under non-dust storm conditions. Of the three end-members, EM1 is most likely the most sensitive recorder of wind strength. We compare our EM1 proportions with mean grain size from the Jingyuan section in the Chinese loess plateau, and assess these in the context of modern and Holocene climate data. Our research suggests that the Siberian High pressure system is the dominant influence on wind dynamics, resulting in loess deposition in the eastern Ili Basin. Six millennial-scale cooling (Heinrich) events can be identified in the NLK loess records. Our grain size data support the hypothesis that the Siberian High acts as teleconnection between the climatic systems of the North Atlantic and East Asia in the high northern latitudes, but not for the mid-latitude westerlies

    Habitat Elevation Shapes Microbial Community Composition and Alter the Metabolic Functions in Wild Sable (Martes zibellina) Guts

    Get PDF
    In recent decades, wild sable (Carnivora Mustelidae Martes zibellina) habitats, which are often natural forests, have been squeezed by anthropogenic disturbances such as clear-cutting, tilling and grazing. Sables tend to live in sloped areas with relatively harsh conditions. Here, we determine effects of environmental factors on wild sable gut microbial communities between high and low altitude habitats using Illumina Miseq sequencing of bacterial 16S rRNA genes. Our results showed that despite wild sable gut microbial community diversity being resilient to many environmental factors, community composition was sensitive to altitude. Wild sable gut microbial communities were dominated by Firmicutes (relative abundance 38.23%), followed by Actinobacteria (30.29%), and Proteobacteria (28.15%). Altitude was negatively correlated with the abundance of Firmicutes, suggesting sable likely consume more vegetarian food in lower habitats where plant diversity, temperature and vegetation coverage were greater. In addition, our functional genes prediction and qPCR results demonstrated that energy/fat processing microorganisms and functional genes are enriched with increasing altitude, which likely enhanced metabolic functions and supported wild sables to survive in elevated habitats. Overall, our results improve the knowledge of the ecological impact of habitat change, providing insights into wild animal protection at the mountain area with hash climate conditions

    Habitat Elevation Shapes Microbial Community Composition and Alter the Metabolic Functions in Wild Sable (Martes zibellina) Guts

    Get PDF
    In recent decades, wild sable (Carnivora Mustelidae Martes zibellina) habitats, which are often natural forests, have been squeezed by anthropogenic disturbances such as clear-cutting, tilling and grazing. Sables tend to live in sloped areas with relatively harsh conditions. Here, we determine effects of environmental factors on wild sable gut microbial communities between high and low altitude habitats using Illumina Miseq sequencing of bacterial 16S rRNA genes. Our results showed that despite wild sable gut microbial community diversity being resilient to many environmental factors, community composition was sensitive to altitude. Wild sable gut microbial communities were dominated by Firmicutes (relative abundance 38.23%), followed by Actinobacteria (30.29%), and Proteobacteria (28.15%). Altitude was negatively correlated with the abundance of Firmicutes, suggesting sable likely consume more vegetarian food in lower habitats where plant diversity, temperature and vegetation coverage were greater. In addition, our functional genes prediction and qPCR results demonstrated that energy/fat processing microorganisms and functional genes are enriched with increasing altitude, which likely enhanced metabolic functions and supported wild sables to survive in elevated habitats. Overall, our results improve the knowledge of the ecological impact of habitat change, providing insights into wild animal protection at the mountain area with hash climate conditions

    BAG Family Gene and Its Relationship with Lung Adenocarcinoma Susceptibility

    Get PDF
    Background and objective BAG genes (Bcl-2-associated athanogene) belong to a recently discovered multifunctional anti-apoptosis gene family that regulate various physiological processes which include apoptosis, tumorigenesis, neural differentiation, stress response and cell cycle and so on. The expression status of BAG family genes are related to certain tumor incidence and prognosis. The aim of this study is to explore the association of the BAG family gene expression status with the susceptibility of lung adenocarcinoma. Methods The gene expression data of BAG family genes from 29 cases of lung adenocarcinoma tissues and matched pericancerous lung tissess were generated by microarray chips. Cox regression was used to analyze the association between the expression of BAG family genes and the susceptibility of lung adenocarcinoma and the results were verified by GEO database. Results The expression levels of BAG-1, BAG-2, BAG-5 in cancer tissues were significantly downregulated compared with matched pericancerous lung tissues and were protective factors of lung adenocarcinoma (P < 0.05, OR < 1); while the expression level of BAG-4 in cancer tissues were remankably upregulated compared with the matched pericancerous lung tissues and was risk factor of lung adenocarcinoma (P < 0.05, OR > 1). Conclusion BAG-1, BAG-2, BAG-5 might be the potential protective factors while BAG-4 is possible risk factor of lung adenocarcinoma

    An integrated software for virus community sequencing data analysis

    Get PDF
    BACKGROUND: A virus community is the spectrum of viral strains populating an infected host, which plays a key role in pathogenesis and therapy response in viral infectious diseases. However automatic and dedicated pipeline for interpreting virus community sequencing data has not been developed yet.RESULTS: We developed Quasispecies Analysis Package (QAP), an integrated software platform to address the problems associated with making biological interpretations from massive viral population sequencing data. QAP provides quantitative insight into virus ecology by first introducing the definition "virus OTU" and supports a wide range of viral community analyses and results visualizations. Various forms of QAP were developed in consideration of broader users, including a command line, a graphical user interface and a web server. Utilities of QAP were thoroughly evaluated with high-throughput sequencing data from hepatitis B virus, hepatitis C virus, influenza virus and human immunodeficiency virus, and the results showed highly accurate viral quasispecies characteristics related to biological phenotypes.CONCLUSIONS: QAP provides a complete solution for virus community high throughput sequencing data analysis, and it would facilitate the easy analysis of virus quasispecies in clinical applications.</p

    Exotic single-photon and enhanced deep-level emissions in hBN strain superlattice

    Full text link
    The peculiar defect-related photon emission processes in 2D hexagonal boron nitride (hBN) have become a topic of intense research due to their potential applications in quantum information and sensing technologies. Recent efforts have focused on activating and modulating the defect energy levels in hBN by methods that can be integrated on a chip, and understanding the underlying physical mechanism. Here, we report on exotic single photon and enhanced deep-level emissions in 2D hBN strain superlattice, which is fabricated by transferring multilayer hBN onto hexagonal close-packed silica spheres on silica substrate. We realize effective activation of the single photon emissions (SPEs) in the multilayer hBN at the positions that are in contact with the apex of the SiO2 spheres. At these points, the local tensile strain induced blue-shift of the SPE is found to be up to 12 nm. Furthermore, high spatial resolution cathodoluminescence measurments show remarkable strain-enhanced deep-level (DL) emissions in the multilayer hBN with the emission intensity distribution following the periodic hexagonal pattern of the strain superlattice. The maximum DL emission enhancement is up to 350% with a energy redshift of 6 nm. Our results provide a simple on-chip compatible method for activating and tuning the defect-related photon emissions in multilayer hBN, demonstrating the potential of hBN strain superlattice as a building block for future on-chip quantum nanophotonic devices

    Traffic-aware multiple mix zone placement for protecting location privacy

    Full text link
    Abstract—Privacy protection is of critical concern to Location-Based Service (LBS) users in mobile networks. Long-term pseudonyms, although appear to be anonymous, in fact em-power third-party service providers to continuously track users’ movements. Researchers have proposed the mix zone model to allow pseudonym changes in protected areas. In this paper, we investigate a new form of privacy attack to the LBS system that an adversary reveals a user’s true identity and complete moving tra-jectory with the aid of side information. We propose a new metric to quantify the system’s resilience to such attacks, and suggest using multiple mix zones to tackle this problem. A mathematical model is presented that treats the deployment of multiple mix zones as a cost constrained optimization problem. Furthermore, the influence of traffic density is also taken into account to enhance the protection effectiveness. The placement optimization problem is NP-hard. We therefore design two heuristic algorithms as practical and effective means to strategically select mix zone locations, and consequently reduce the privacy risks of mobile users trajectories. The effectiveness of our proposed solutions is demonstrated through extensive simulations on real-world mobile user data traces. I

    Comparative analysis of fatty acid metabolism based on transcriptome sequencing of wild and cultivated Ophiocordyceps sinensis

    Get PDF
    Background Ophiocordyceps sinensis is a species endemic to the alpine and high-altitude areas of the Qinghai-Tibet plateau. Although O. sinensis has been cultivated since the past few years, whether cultivated O. sinensis can completely replace wild O. sinensis remains to be determined. Methods To explore the differences of O. sinensis grown in varied environments, we conducted morphological and transcriptomic comparisons between wild and cultivated samples who with the same genetic background. Results The results of morphological anatomy showed that there were significant differences between wild and cultivated O. sinensis, which were caused by different growth environments. Then, a total of 9,360 transcripts were identified using Illumina paired-end sequencing. Differential expression analysis revealed that 73.89% differentially expressed genes (DEGs) were upregulated in O. sinensis grown under natural conditions compared with that grown under artificial conditions. Functional enrichment analysis showed that some key DEGs related to fatty acid metabolism, including acyl-CoA dehydrogenase, enoyl-CoA hydratase, 3-ketoacyl-CoA thiolase, and acetyl-CoA acetyltransferase, were upregulated in wild O. sinensis. Furthermore, gas chromatography-mass spectrometry results confirmed that the fatty acid content of wild O. sinensis was significantly higher than that of cultivated O. sinensis and that unsaturated fatty acids accounted for a larger proportion. Conclusion These results provide a theoretical insight to the molecular regulation mechanism that causes differences between wild and cultivated O. sinensis and improving artificial breeding
    corecore