35 research outputs found

    Non-Destructive Assessment of Stone Heritage Weathering Types Based on Machine Learning Method Using Hyperspectral Data

    Get PDF
    Stone cultural heritage is exposed to various environments, resulting in a diverse range of weathering types. The identification of these weathering types is vital for targeted conservation efforts. In this paper, a weathering type classification method based on hyperspectral imaging technology is proposed. Firstly, fresh sandstones are collected from Yungang Grottoes to carry out the simulated weathering experiments, including freeze-thaw cycles and wet-dry cycles with acid, alkali and salt solutions. Subsequently, the hyperspectral imaging system was used to collect the visible-near-infrared (VNIR) and short-wave infrared (SWIR) images of the sandstone samples with different weathering types and degrees. The surface spectral reflectance of sandstone samples with different weathering types were used as training data, with weathering types serving as the labels. Support vector machine (SVM), K-nearest neighbour (KNN), linear discriminant analysis (LDA) and random forest (RF) were used to establish weathering type classification models. The results show that the SVM model and LDA model based on both VNIR and SWIR spectra exhibit outstanding performance, with a best accuracy of 0.994. The framework proposed in this paper facilitates rapid and non-contact assessment of the weathering types of the superficial layers of stone cultural heritage, thereby supporting more targeted conservation work

    Neural Speaker Diarization Using Memory-Aware Multi-Speaker Embedding with Sequence-to-Sequence Architecture

    Full text link
    We propose a novel neural speaker diarization system using memory-aware multi-speaker embedding with sequence-to-sequence architecture (NSD-MS2S), which integrates the strengths of memory-aware multi-speaker embedding (MA-MSE) and sequence-to-sequence (Seq2Seq) architecture, leading to improvement in both efficiency and performance. Next, we further decrease the memory occupation of decoding by incorporating input features fusion and then employ a multi-head attention mechanism to capture features at different levels. NSD-MS2S achieved a macro diarization error rate (DER) of 15.9% on the CHiME-7 EVAL set, which signifies a relative improvement of 49% over the official baseline system, and is the key technique for us to achieve the best performance for the main track of CHiME-7 DASR Challenge. Additionally, we introduce a deep interactive module (DIM) in MA-MSE module to better retrieve a cleaner and more discriminative multi-speaker embedding, enabling the current model to outperform the system we used in the CHiME-7 DASR Challenge. Our code will be available at https://github.com/liyunlongaaa/NSD-MS2S.Comment: Submitted to ICASSP 202

    Light the Signal: Optimization of Signal Leakage Attacks against LWE-Based Key Exchange

    Get PDF
    Key exchange protocols from the learning with errors (LWE) problem share many similarities with the Diffie–Hellman–Merkle (DHM) protocol, which plays a central role in securing our Internet. Therefore, there has been a long time effort in designing authenticated key exchange directly from LWE to mirror the advantages of DHM-based protocols. In this paper, we revisit signal leakage attacks and show that the severity of these attacks against LWE-based (authenticated) key exchange is still underestimated. In particular, by converting the problem of launching a signal leakage attack into a coding problem, we can significantly reduce the needed number of queries to reveal the secret key. Specifically, for DXL-KE we reduce the queries from 1,266 to only 29, while for DBS-KE, we need only 748 queries, a great improvement over the previous 1,074,434 queries. Moreover, our new view of signals as binary codes enables recognizing vulnerable schemes more easily. As such we completely recover the secret key of a password-based authenticated key exchange scheme by Dabra et al. with only 757 queries and partially reveal the secret used in a two-factor authentication by Wang et al. with only one query. The experimental evaluation supports our theoretical analysis and demonstrates the efficiency and effectiveness of our attacks. Our results caution against underestimating the power of signal leakage attacks as they are applicable even in settings with a very restricted number of interactions between adversary and victim

    Overpotential decomposition enabled decoupling of complex kinetic processes in battery electrodes

    Full text link
    Identifying overpotential components of electrochemical systems enables quantitative analysis of polarization contributions of kinetic processes under practical operating conditions. However, the inherently coupled kinetic processes lead to an enormous challenge in measuring individual overpotentials, particularly in composite electrodes of lithium-ion batteries. Herein, the full decomposition of electrode overpotential is realized by the collaboration of single-layer structured particle electrode (SLPE) constructions and time-resolved potential measurements, explicitly revealing the evolution of kinetic processes. Perfect prediction of the discharging profiles is achieved via potential measurements on SLPEs, even in extreme polarization conditions. By decoupling overpotentials in different electrode/cell structures and material systems, the dominant limiting processes of battery rate performance are uncovered, based on which the optimization of electrochemical kinetics can be conducted. Our study not only shades light on decoupling complex kinetics in electrochemical systems, but also provides vitally significant guidance for the rational design of high-performance batteries

    A 1 x 8 Linear Ultra-Wideband Phased Array With Connected Dipoles and Hyperbolic Microstrip Baluns

    Get PDF
    A 1×8 linear single polarized ultra-wideband connected dipole phased array with wide angle scan range is proposed. The dipoles in the array are connected with each other in E-plane to improve the impedance matching on the low end of the frequency band. The frequency band and the scan range in E-plane is 2~9 GHz for broadside radiation, 2~8 GHz for 30° scan, 2~7 GHz for 45° scan, and 2~6.5 GHz for 60° scan. The VSWR is better than 2.0 across the frequency band from 2 to 9 GHz for broadside radiation and the cross-polarization level is below -10 dB. A hyperbolic microstrip balun is used as an impedance transformer to connect the 50 Ω SMA connector to a 150 Ω broadband dipole in an array. The structure of this antenna is totally planar and low profile, thus it is made easy to integrate with the PCB boards. To eliminate the surface wave blindness, no other dielectric layer is used in the array. The proposed balun supports common mode (CM) current and the radiation of this CM current cancels the radiation of the dipole in some frequency for a certain scan angle, this results in feed blindness. Adding H-plane PEC walls decreases the feed blindness frequency in the design

    L2hgdh Deficiency Accumulates l-2-Hydroxyglutarate with Progressive Leukoencephalopathy and Neurodegeneration

    Get PDF
    l-2-Hydroxyglutarate aciduria (L-2-HGA) is an autosomal recessive neurometabolic disorder caused by a mutation in the l-2-hydroxyglutarate dehydrogenase (L2HGDH) gene. In this study, we generated L2hgdh knockout (KO) mice and observed a robust increase of l-2-hydroxyglutarate (L-2-HG) levels in multiple tissues. The highest levels of L-2-HG were observed in the brain and testis, with a corresponding increase in histone methylation in these tissues. L2hgdh KO mice exhibit white matter abnormalities, extensive gliosis, microglia-mediated neuroinflammation, and an expansion of oligodendrocyte progenitor cells (OPCs). Moreover, L2hgdh deficiency leads to impaired adult hippocampal neurogenesis and late-onset neurodegeneration in mouse brains. Our data provide in vivo evidence that L2hgdh mutation leads to L-2-HG accumulation, leukoencephalopathy, and neurodegeneration in mice, thereby offering new insights into the pathophysiology of L-2-HGA in humans

    WSe<sub>(2-x)</sub>Te<sub>x</sub> alloys grown by molecular beam epitaxy

    Get PDF
    The growth of WSe(2-x)Tex alloys by molecular beam epitaxy has been demonstrated for the first time to investigate the phase transition from the semiconducting 2H phase to the semi-metallic 1T’ phase as a function of Te concentration. Up to 14% Te incorporation, stable alloys in the semiconducting 2H phase are achieved while above 79% Te incorporation, stable alloys in the semi-metallic 1T’ phase are obtained. Our results indicate the MBE-grown WSe(2-x)Tex alloys exhibit a miscibility gap from 14% to 79% Te concentrations at a growth temperature of 250 °C, a temperature compatible with direct vertical back-end-of-line integration. This miscibility gap results in phase separation of two different alloys, both with different composition and crystal structure. While the alloying of small Te concentrations does indeed result in a desired reduction of the semiconducting bandgap, the phase separation above 14% Te incorporation prohibits bandgap tuning for a wider range of applications. These results highlight the competing energies and kinetics associated with producing uniform WSe(2-x)Tex alloys

    Interface chemistry of contact metals and ferromagnets on the topological insulator Bi2Se3

    Get PDF
    The interface between the topological insulator Bi2Se3 and deposited metal films is investigated using x-ray photoelectron spectroscopy including conventional contact metals (Au, Pd, Cr, and Ir) and magnetic materials (Co, Fe, Ni, Co0.8Fe0.2, and Ni0.8Fe0.2). Au is the only metal to show little or no interaction with the Bi2Se3, with no interfacial layer between the metal and the surface of the TI. The other metals show a range of reaction behaviors with the relative strength of reaction (obtained from the amount of Bi2Se3 consumed during reaction) ordered as: Au < Pd < Ir < Co ≤ CoFe < Ni < Cr < NiFe < Fe, in approximate agreement with the behavior expected from the Gibbs free energies of formation for the alloys formed. Post metallization anneals at 300°C in vacuum were also performed for each interface. Several of the metal films were not stable upon anneal and desorbed from the surface (Au, Pd, Ni, and Ni0.8Fe0.2), while Cr, Fe, Co, and Co0.8Fe0.2 showed accelerated reactions with the underlying Bi2Se3, including inter-diffusion between the metal and Se. Ir was the only metal to remain stable following anneal, showing no significant increase in reaction with the Bi2Se3. This study reveals the nature of the metal-Bi2Se3 interface for a range of metals. The reactions observed must be considered when designing Bi2Se3 based devices

    Devil is Virtual: Reversing Virtual Inheritance in C++ Binaries

    Full text link
    Complexities that arise from implementation of object-oriented concepts in C++ such as virtual dispatch and dynamic type casting have attracted the attention of attackers and defenders alike. Binary-level defenses are dependent on full and precise recovery of class inheritance tree of a given program. While current solutions focus on recovering single and multiple inheritances from the binary, they are oblivious to virtual inheritance. Conventional wisdom among binary-level defenses is that virtual inheritance is uncommon and/or support for single and multiple inheritances provides implicit support for virtual inheritance. In this paper, we show neither to be true. Specifically, (1) we present an efficient technique to detect virtual inheritance in C++ binaries and show through a study that virtual inheritance can be found in non-negligible number (more than 10\% on Linux and 12.5\% on Windows) of real-world C++ programs including Mysql and libstdc++. (2) we show that failure to handle virtual inheritance introduces both false positives and false negatives in the hierarchy tree. These false positves and negatives either introduce attack surface when the hierarchy recovered is used to enforce CFI policies, or make the hierarchy difficult to understand when it is needed for program understanding (e.g., during decompilation). (3) We present a solution to recover virtual inheritance from COTS binaries. We recover a maximum of 95\% and 95.5\% (GCC -O0) and a minimum of 77.5\% and 73.8\% (Clang -O2) of virtual and intermediate bases respectively in the virtual inheritance tree.Comment: Accepted at CCS20. This is a technical report versio

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore