230 research outputs found

    Minimal ureagenesis is necessary for survival in the murine model of hyperargininemia treated by AAV-based gene therapy.

    Get PDF
    Hyperammonemia is less severe in arginase 1 deficiency compared with other urea cycle defects. Affected patients manifest hyperargininemia and infrequent episodes of hyperammonemia. Patients typically suffer from neurological impairment with cortical and pyramidal tract deterioration, spasticity, loss of ambulation, seizures and intellectual disability; death is less common than with other urea cycle disorders. In a mouse model of arginase I deficiency, the onset of symptoms begins with weight loss and gait instability, which progresses toward development of tail tremor with seizure-like activity; death typically occurs at about 2 weeks of life. Adeno-associated viral vector gene replacement strategies result in long-term survival of mice with this disorder. With neonatal administration of vector, the viral copy number in the liver greatly declines with hepatocyte proliferation in the first 5 weeks of life. Although the animals do survive, it is not known from a functional standpoint how well the urea cycle is functioning in the adult animals that receive adeno-associated virus. In these studies, we administered [1-13C] acetate to both littermate controls and adeno-associated virus-treated arginase 1 knockout animals and examined flux through the urea cycle. Circulating ammonia levels were mildly elevated in treated animals. Arginine and glutamine also had perturbations. Assessment 30 min after acetate administration demonstrated that ureagenesis was present in the treated knockout liver at levels as low at 3.3% of control animals. These studies demonstrate that only minimal levels of hepatic arginase activity are necessary for survival and ureagenesis in arginase-deficient mice and that this level of activity results in control of circulating ammonia. These results may have implications for potential therapy in humans with arginase deficiency

    Utilization of [15N]glutamate by cultured astrocytes

    Full text link

    Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease

    Get PDF
    Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with lifethreatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children commonly suffer metabolic decompensation in the context of catabolic stress associated with non-specific illness. The mechanisms underlying this decompensation and brain injury are poorly understood. Using recently developed mouse models of classic and intermediate maple syrup urine disease, we assessed biochemical, behavioural and neuropathological changes that occurred during encephalopathy in these mice. Here, we show that rapid brain leucine accumulation displaces other essential amino acids resulting in neurotransmitter depletion and disruption of normal brain growth and development. A novel approach of administering norleucine to heterozygous mothers of classic maple syrup urine disease pups reduced branched-chain amino acid accumulation in milk as well as blood and brain of these pups to enhance survival. Similarly, norleucine substantially delayed encephalopathy in intermediate maple syrup urine disease mice placed on a high protein diet that mimics the catabolic stress shown to cause encephalopathy in human maple syrup urine disease. Current findings suggest two converging mechanisms of brain injury in maple syrup urine disease including: (i) neurotransmitter deficiencies and growth restriction associated with branchedchain amino acid accumulation and (ii) energy deprivation through Krebs cycle disruption associated with branched-chain ketoacid accumulation. Both classic and intermediate models appear to be useful to study the mechanism of brain injury and potential treatment strategies for maple syrup urine disease. Norleucine should be further tested as a potential treatment to prevent encephalopathy in children with maple syrup urine disease during catabolic stress

    Phase I/II Trial of Liver-derived Mesenchymal Stem Cells in Pediatric Liver-based Metabolic Disorders: A Prospective, Open Label, Multicenter, Partially Randomized, Safety Study of One Cycle of Heterologous Human Adult Liver-derived Progenitor Cells (HepaStem) in Urea Cycle Disorders and Crigler-Najjar Syndrome Patients

    Get PDF
    Background. Regenerative medicine using stem cell technology is an emerging field that is currently tested for inborn and acquired liver diseases. Objective. This phase I/II prospective, open label, multicenter, randomized trial aimed primarily at evaluating the safety of Heterologous Human Adult Liver–derived Progenitor Cells (HepaStem) in pediatric patients with urea cycle disorders (UCDs) or Crigler-Najjar (CN) syndrome 6 months posttransplantation. The secondary objective included the assessment of safety up to 12 months postinfusion and of preliminary efficacy. Methods. Fourteen patients with UCDs and 6 with CN syndrome were divided into 3 cohorts by body weight and intraportally infused with 3 doses of HepaStem. Clinical status, portal vein hemodynamics, morphology of the liver, de novo detection of circulating anti–human leukocyte antigen antibodies, and clinically significant adverse events (AEs) and serious adverse events to infusion were evaluated by using an intent-to-treat analysis. Results. The overall safety of HepaStem was confirmed. For the entire study period, patient-month incidence rate was 1.76 for the AEs and 0.21 for the serious adverse events, of which 38% occurred within 1 month postinfusion. There was a trend of higher events in UCD as compared with CN patients. Segmental left portal vein thrombosis occurred in 1 patient and intraluminal local transient thrombus in a second patient. The other AEs were in line with expectations for catheter placement, cell infusion, concomitant medications, age, and underlying diseases. Conclusions. This study led to European clinical trial authorization for a phase II study in a homogeneous patient cohort, with repeated infusions and intermediate doses

    Primary Coenzyme Q Deficiency in Pdss2 Mutant Mice Causes Isolated Renal Disease

    Get PDF
    Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment

    Creatine Protects against Excitoxicity in an In Vitro Model of Neurodegeneration

    Get PDF
    Creatine has been shown to be neuroprotective in aging, neurodegenerative conditions and brain injury. As a common molecular background, oxidative stress and disturbed cellular energy homeostasis are key aspects in these conditions. Moreover, in a recent report we could demonstrate a life-enhancing and health-promoting potential of creatine in rodents, mainly due to its neuroprotective action. In order to investigate the underlying pharmacology mediating these mainly neuroprotective properties of creatine, cultured primary embryonal hippocampal and cortical cells were challenged with glutamate or H2O2. In good agreement with our in vivo data, creatine mediated a direct effect on the bioenergetic balance, leading to an enhanced cellular energy charge, thereby acting as a neuroprotectant. Moreover, creatine effectively antagonized the H2O2-induced ATP depletion and the excitotoxic response towards glutamate, while not directly acting as an antioxidant. Additionally, creatine mediated a direct inhibitory action on the NMDA receptor-mediated calcium response, which initiates the excitotoxic cascade. Even excessive concentrations of creatine had no neurotoxic effects, so that high-dose creatine supplementation as a health-promoting agent in specific pathological situations or as a primary prophylactic compound in risk populations seems feasible. In conclusion, we were able to demonstrate that the protective potential of creatine was primarily mediated by its impact on cellular energy metabolism and NMDA receptor function, along with reduced glutamate spillover, oxidative stress and subsequent excitotoxicity

    Respiratory Insufficiency Correlated Strongly with Mortality of Rodents Infected with West Nile Virus

    Get PDF
    West Nile virus (WNV) disease can be fatal for high-risk patients. Since WNV or its antigens have been identified in multiple anatomical locations of the central nervous system of persons or rodent models, one cannot know where to investigate the actual mechanism of mortality without careful studies in animal models. In this study, depressed respiratory functions measured by plethysmography correlated strongly with mortality. This respiratory distress, as well as reduced oxygen saturation, occurred beginning as early as 4 days before mortality. Affected medullary respiratory control cells may have contributed to the animals' respiratory insufficiency, because WNV antigen staining was present in neurons located in the ventrolateral medulla. Starvation or dehydration would be irrelevant in people, but could cause death in rodents due to lethargy or loss of appetite. Animal experiments were performed to exclude this possibility. Plasma ketones were increased in moribund infected hamsters, but late-stage starvation markers were not apparent. Moreover, daily subcutaneous administration of 5% dextrose in physiological saline solution did not improve survival or other disease signs. Therefore, infected hamsters did not die from starvation or dehydration. No cerebral edema was apparent in WNV- or sham-infected hamsters as determined by comparing wet-to-total weight ratios of brains, or by evaluating blood-brain-barrier permeability using Evans blue dye penetration into brains. Limited vasculitis was present in the right atrium of the heart of infected hamsters, but abnormal electrocardiograms for several days leading up to mortality did not occur. Since respiratory insufficiency was strongly correlated with mortality more than any other pathological parameter, it is the likely cause of death in rodents. These animal data and a poor prognosis for persons with respiratory insufficiency support the hypothesis that neurological lesions affecting respiratory function may be the primary cause of human WNV-induced death

    Transatlantic combined and comparative data analysis of 1095 patients with urea cycle disorders?A successful strategy for clinical research of rare diseases

    Get PDF
    BACKGROUND: To improve our understanding of urea cycle disorders (UCDs) prospectively followed by two North American (NA) and European (EU) patient cohorts. AIMS: Description of the NA and EU patient samples and investigation of the prospects of combined and comparative analyses for individuals with UCDs. METHODS: Retrieval and comparison of the data from 1095 individuals (NA: 620, EU: 475) from two electronic databases. RESULTS: The proportion of females with ornithine transcarbamylase deficiency (fOTC-D), particularly those being asymptomatic (asfOTC-D), was higher in the NA than in the EU sample. Exclusion of asfOTC-D resulted in similar distributions in both samples. The mean age at first symptoms was higher in NA than in EU patients with late onset (LO), but similar for those with early (</= 28 days) onset (EO) of symptoms. Also, the mean age at diagnosis and diagnostic delay for EO and LO patients were similar in the NA and EU cohorts. In most patients (including fOTC-D), diagnosis was made after the onset of symptoms (59.9%) or by high-risk family screening (24.7%), and less often by newborn screening (8.9%) and prenatal testing (3.7%). Analysis of clinical phenotypes revealed that EO patients presented with more symptoms than LO individuals, but that numbers of symptoms correlated with plasma ammonium concentrations in EO patients only. Liver transplantation was reported for 90 NA and 25 EU patients. CONCLUSIONS: Combined analysis of databases drawn from distinct populations opens the possibility to increase sample sizes for natural history questions, while comparative analysis utilizing differences in approach to treatment can evaluate therapeutic options and enhance long-term outcome studies
    • …
    corecore