38 research outputs found

    Quasi-elastic knockout of pions and kaons from nucleons by high-energy electrons and quark microscopy of "soft" meson degrees of freedom in the nucleon

    Full text link
    Electro-production of pions and kaons at the kinematics of quasi-elastic knockout (which is well known in the physics of atomic nucleus and corresponds to the tt-pole diagram) is proposed for obtaining their momentum distribution (MD) in various channels of virtual decay NB+πN \to B+\pi, B=NB=N, Δ\Delta, NN^*, NN^{**}, and NY+KN \to Y+K, Y=ΛY=\Lambda, Σ\Sigma. It is a powerful tool for investigation of a quark microscopic picture of the meson cloud in the nucleon. A model of scalar qqˉq \bar{q} (3P0^3P_0) fluctuation in the non-trivial QCD vacuum is used to calculate pion and kaon momentum distributions (MD) in these channels.Comment: 31 pages, 11 figures, submitted to Nucl.Phys.

    Study of KS KL Coupled Decays and KL -Be Interactions with the CMD-2 Detector at VEPP-2M Collider

    Full text link
    The integrated luminosity about 4000 inverse nanobarn of around phi meson mass ( 5 millions of phi mesons) has been collected with the CMD-2 detector at the VEPP-2M collider. A latest analysis of the KS KL coupled decays based on 30 % of available data is presented in this paper. The KS KL pairs from phi meson decays were reconstructed in the drift chamber when both kaons decayed into two charged particles. From a sample of 1423 coupled decays a selection of candidates to the CP violating KL into pi+ pi- decay was performed. CP violating decays were not identified because of the domination of events with a KL regenerating at the Be beam pipe into KS and a background from KL semileptonic decays. The regeneration cross section of 110 MeV/c KL mesons was found to be 53 +- 17 mb in agreement with theoretical expectations. The angular distribution of KS mesons after regeneration and the total cross section of KL for Be have been measured.Comment: 14 pages, 8 figure

    Theory of nonlinear sub-Doppler laser spectroscopy taking into account atomic-motion-induced density-dependent effects in a gas

    No full text
    International audienceWe develop a field-nonlinear theory of sub-Doppler spectroscopy in a gas of two-level atoms, based on a self-consistent solution of the Maxwell-Bloch equations in the mean field and single-atom density matrix approximations. This makes it possible to correctly take into account the effects caused by the free motion of atoms in a gas, which lead to a nonlinear dependence of the spectroscopic signal on the atomic density even in the absent of a direct interatomic interaction (e.g., dipole-dipole interaction). Within the framework of this approach, analytical expressions for the light field were obtained for an arbitrary number of resonant waves and arbitrary optical thickness of a gas medium. Sub-Doppler spectroscopy in the transmission signal for two counterpropagating and co-propagating waves has been studied in detail. A previously unknown red shift of a narrow sub-Doppler resonance is predicted in a counterpropagating waves scheme, when the frequency of one wave is fixed and the frequency of the other wave is varied. The magnitude of this shift depends on the atomic density and can be more than an order of magnitude greater than the known shift from the interatomic dipole-dipole interaction (Lorentz-Lorenz shift). The found effects, caused by the free motion of atoms, require a significant revision of the existing picture of spectroscopic effects depending on the density of atoms in a gas. Apart of fundamental aspect, obtained results are important for precision laser spectroscopy and optical atomic clocks

    Theory of nonlinear sub-Doppler laser spectroscopy taking into account atomic-motion-induced density-dependent effects in a gas

    No full text
    International audienceWe develop a field-nonlinear theory of sub-Doppler spectroscopy in a gas of two-level atoms, based on a self-consistent solution of the Maxwell-Bloch equations in the mean field and single-atom density matrix approximations. This makes it possible to correctly take into account the effects caused by the free motion of atoms in a gas, which lead to a nonlinear dependence of the spectroscopic signal on the atomic density even in the absent of a direct interatomic interaction (e.g., dipole-dipole interaction). Within the framework of this approach, analytical expressions for the light field were obtained for an arbitrary number of resonant waves and arbitrary optical thickness of a gas medium. Sub-Doppler spectroscopy in the transmission signal for two counterpropagating and co-propagating waves has been studied in detail. A previously unknown red shift of a narrow sub-Doppler resonance is predicted in a counterpropagating waves scheme, when the frequency of one wave is fixed and the frequency of the other wave is varied. The magnitude of this shift depends on the atomic density and can be more than an order of magnitude greater than the known shift from the interatomic dipole-dipole interaction (Lorentz-Lorenz shift). The found effects, caused by the free motion of atoms, require a significant revision of the existing picture of spectroscopic effects depending on the density of atoms in a gas. Apart of fundamental aspect, obtained results are important for precision laser spectroscopy and optical atomic clocks

    Assessing the Influence of Environmental Parameters on Amur Tiger Distribution in the Russian Far East Using a MaxEnt Modeling Approach

    No full text
    A better understanding of which biological and anthropogenic parameters are strong predictors of suitable habitats for tigers will help address conservation planning in those areas, which is crucial for maintaining connectivity and preventing further population fragmentation. The aim of this study was to develop a spatial model based on a number of environmental and anthropogenic variables as well as tiger presence data from a 2005 large-scale winter survey to predict Amur tiger distribution within its range in the RFE. Modeling the geographic distribution of Amur tigers required an application of the MaxEnt algorithm using a dataset of 1027 tiger track records and a set of environmental variables, such as distance to rivers, elevation and habitat type, and anthropogenic variables, such as distance to forest and main roads, distance to settlements and vegetation cover change. The models were divided into two groups based on elevation and habitat type. Elevation (AUC = 0.821) appeared to be a better predictor of habitat suitability for tigers than habitat type (AUC = 0.784)
    corecore