381 research outputs found

    A Hybrid Rydberg Quantum Gate for Quantum Network

    Full text link
    The high fidelity storage, distribution and processing of quantum information prefers qubits with different physical properties. Thus, hybrid quantum gates interfacing different types of qubits are essential for the realization of complex quantum network structures. A Rydberg-atom based physical quantum CZ gate is proposed to hybridly process the polarisation-encoded single-photon optical qubit and the "Schroedinger cat" microwave qubit. The degradation of the fidelity under the influence of various noise channels, such as microwave cavity loss, sponetanous emission of atom states, and non-adiabaticity effect, etc, has been analyised through detailed theoretical analysis by deriving input-output relation of qubit fields. The feasibility and the challenges of the protocol within current technology are also discussed by analysing the possible experimental parameter settings

    Cytocompatibility and osteogenesis evaluation of HA/GCPU composite as scaffolds for bone tissue engineering

    Get PDF
    AbstractPorous scaffolds for bone repair were prepared from newly designed segmented aliphatic polyurethane based on glyceride of castor oil and isophorone diisocyanate. To promote the scaffolds' biological and mechanical properties, hydroxyapatite powder was incorporated into the polymer matrix. The scaffold (named as HA/GCPU) with 40 wt% HA had an average pore size of 500 μm and a compressive strength of 4.6 MPa. The in vitro cell culture studies demonstrated that the HA/GCPU scaffold owned good cytocompatibility. The scaffold and cell-seeded scaffold were implanted in defects (Ф3 mm × 3 mm) of femoral condyle of Sprague–Dawley rats, respectively. New bone could extensively form in both the scaffold and cell-seeded scaffold. It indicates that the HA/GCPU composite scaffold has good prospect for bone repair and regeneration

    Cell surface-specific N-glycan profiling in breast cancer

    Get PDF
    Aberrant changes in specific glycans have been shown to be associated with immunosurveillance, tumorigenesis, tumor progression and metastasis. In this study, the N-glycan profiling of membrane proteins from human breast cancer cell lines and tissues was detected using modified DNA sequencer-assisted fluorophore-assisted carbohydrate electrophoresis (DSA-FACE). The N-glycan profiles of membrane proteins were analyzed from 7 breast cancer cell lines and MCF 10A, as well as from 100 pairs of breast cancer and corresponding adjacent tissues. The results showed that, compared with the matched adjacent normal tissue samples, two biantennary N-glycans (NA2 and NA2FB) were significantly decreased (p <0.0001) in the breast cancer tissue samples, while the triantennary glycan (NA3FB) and a high-mannose glycan (M8) were dramatically increased (p = 0.001 and p <0.0001, respectively). Moreover, the alterations in these specific N-glycans occurred through the oncogenesis and progression of breast cancer. These results suggested that the modified method based on DSA-FACE is a high-throughput detection technology that is suited for analyzing cell surface N-glycans. These cell surface-specific N-glycans may be helpful in recognizing the mechanisms of tumor cell immunologic escape and could be potential targets for new breast cancer drugs

    Surface bioactivation through the nanostructured layer on titanium modified by facile HPT treatment

    Get PDF
    AbstractFacile fabrication of nanostructured surface is of great importance for the use of titanium (Ti) implants in biomedical field. In this study, a low-cost and easy-to-operate method called HPT (hydrothermal &amp; pressure) here has been developed and used to fabricate the expected nanostructured surface on Ti substrates. The effects of experimental parameters on the morphology of Ti surface were investigated and characterized. The results indicated that by altering the hydrothermal pressure, NaOH concentration and treating time, surface nanostructure like nanopetals or nanoflakes could be formed on the surface of Ti substrates. The orthogonal experiments were conducted to demonstrate the optimized operation conditions. A formation mechanism of the nanostructured titanate layer was proposed, revealing that the nanostructured layer could be formed via a special upward and downward co-growth manner. In vitro cell culture showed that the HPT treated Ti substrates, especially the T-10 sample, could greatly enhance the cell-material interactions, i.e. the cell proliferation and differentiation, focal protein adhesion, and osteogenic factor expression. The HPT method paves a new way to modify the surface of Ti implants with better bioactivity and promising prospect for future biomedical applications.</jats:p

    Extraction and Purification of a Lectin from Red Kidney Bean and Preliminary Immune Function Studies of the Lectin and Four Chinese Herbal Polysaccharides

    Get PDF
    Reversed micelles were used to extract lectin from red kidney beans and factors affecting reverse micellar systems (pH value, ionic strength and extraction time) were studied. The optimal conditions were extraction at pH 4–6, back extraction at pH 9–11, ion strength at 0.15 M NaCl, extraction for 4–6 minutes and back extraction for 8 minutes. The reverse micellar system was compared with traditional extraction methods and demonstrated to be a time-saving method for the extraction of red kidney bean lectin. Mitogenic activity of the lectin was reasonably good compared with commercial phytohemagglutinin (extracted from Phaseolus vulgaris) Mitogenic properties of the lectin were enhanced when four Chinese herbal polysaccharides were applied concurrently, among which 50 μg/mL Astragalus mongholicus polysaccharides (APS) with 12.5 μg/mL red kidney bean lectin yielded the highest mitogenic activity and 100 mg/kg/bw APS with 12.5 mg/kg/bw red kidney bean lectin elevated mouse nonspecific immunity

    The influence of discharge power and heat treatment on calcium phosphate coatings prepared by RF magnetron sputtering deposition

    Get PDF
    Ca–P coatings with different Ca/P ratio and composition were successfully prepared by RF magnetron sputtering deposition. The Ca/P ratio, phase composition, structure and morphological properties were characterized by XRD, FTIR, EDS and SEM analyses. All the as-sputtered coatings were amorphous and after IR-irradiation the coatings altered into a crystalline phase. The obtained coatings had a Ca/P ratio that varied from 0.55 to 2.10 and different phase compositions or mixtures of apatite, beta-pyrophosphate and beta-tricalciumphosphate structures were formed. Evidently, the phase compositions of the sputtered coatings are determined not only by the discharge power ratio of the hydroxylapatite and calcium pyrophosphate targets but also by the annealing temperature

    A Rank-Constrained Matrix Representation for Hypergraph-Based Subspace Clustering

    Get PDF
    This paper presents a novel, rank-constrained matrix representation combined with hypergraph spectral analysis to enable the recovery of the original subspace structures of corrupted data. Real-world data are frequently corrupted with both sparse error and noise. Our matrix decomposition model separates the low-rank, sparse error, and noise components from the data in order to enhance robustness to the corruption. In order to obtain the desired rank representation of the data within a dictionary, our model directly utilizes rank constraints by restricting the upper bound of the rank range. An alternative projection algorithm is proposed to estimate the low-rank representation and separate the sparse error from the data matrix. To further capture the complex relationship between data distributed in multiple subspaces, we use hypergraph to represent the data by encapsulating multiple related samples into one hyperedge. The final clustering result is obtained by spectral decomposition of the hypergraph Laplacian matrix. Validation experiments on the Extended Yale Face Database B, AR, and Hopkins 155 datasets show that the proposed method is a promising tool for subspace clustering

    Experimental investigation of immiscible water-alternating-gas injection in ultra-high water-cut stage reservoir

    Get PDF
    Water-alternating-gas (WAG) injection is recommended as a means of improving gas mobility control. This paper describes a series of coreflood tests conducted to investigate the potential for continuous gas injection and WAG injection in ultra-high water-cut saline reservoirs. The mechanisms of immiscible water-alternating-nitrogen injection on residual oil distribution are analyzed, and pore-scale analysis is conducted. The effect of injection parameters on residual oil distribution and recovery efficiency is also evaluated. Coreflood results show that tertiary oil recovery efficiency is significantly higher using WAG injection than continuous gas injection during the ultra-high water-cut period. Pore-scale visualization illustrates the movement of gas through the waterflooded channels into the pore space previously occupied by water and residual oil, which then becomes trapped. Injected gas breaks the force balance of microscopic residual oil and reduces residual oil saturation. This mobilizes the displaced/collected residual oil into large waterfilled pores and blocks several water channels. WAG flooding can decrease free-gas saturation and increase trapped-gas saturation significantly, resulting in decreased relative permeabilities of gas and water. The experimental results indicate that appropriate WAG design parameters could enhance recovery by 15.62% when the injected pore volume of water and gas in the cycle is 0.3 PV at a gas/water injection ratio of 2:1. The results from this study will allow researchers and reservoir engineers to understand and implement immiscible WAG injection as an enhanced oil recovery method in ultra-high water-cut stage reservoirs.Cited as: Kong, D., Gao, Y., Sarma, H., Li, Y., Guo, H., Zhu, W. Experimental investigation of immiscible water-alternating-gas injection in ultra-high water-cut stage reservoir. Advances in Geo-Energy Research, 2021, 5(2): 139-152, doi: 10.46690/ager.2021.02.0
    corecore