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Porous scaffolds for bone repair were prepared from newly designed segmented aliphatic polyurethane
based on glyceride of castor oil and isophorone diisocyanate. To promote the scaffolds’ biological and
mechanical properties, hydroxyapatite powder was incorporated into the polymer matrix. The scaffold
(named as HA/GCPU) with 40 wt% HA had an average pore size of 500 mm and a compressive strength of
4.6 MPa. The in vitro cell culture studies demonstrated that the HA/GCPU scaffold owned good cyto-
compatibility. The scaffold and cell-seeded scaffold were implanted in defects (V3 mm � 3 mm) of
femoral condyle of SpragueeDawley rats, respectively. New bone could extensively form in both the
scaffold and cell-seeded scaffold. It indicates that the HA/GCPU composite scaffold has good prospect for
bone repair and regeneration.

� 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
1. Introduction

There are a large number of patients suffering from bone defects
caused by trauma, tumor or bone related diseases [1]. Current
strategies for repair of bone defects include autograft, allograft and
synthetic materials [2]. Although autograft remain to be the gold
standard due to its osteoconductive, osteoinductive and non-
immunogenicity [3], it is subjected to donor shortage and donor
site morbidity [4]. In addition, allograft has the risk of immuno-
logical and disease transmission [5]. Synthetic materials are often
used to substitute autograft and allograft, however, they are
sometimes subjected to fatigue failure and wear over time [6]. To
overcome aforesaid disadvantage, bone tissue engineering (BTE)
has emerged as an alternative for bone repair and regeneration. The
researches in BTE focus on a three-dimensional porous scaffold
which can be loaded with specific living cells or growth factors to
launch a bone tissue regeneration in natural way [7]. In previous
study, several porous scaffolds composed of hydroxyapatite (HA)
and castor oil-based polyurethane (PU) were prepared and their
potential for bone repair were evaluated in our group. In order to
enhance themechanical strength of HA/PU scaffolds, a newattempt
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is made in this study to use the glyceride of castor oil as the soft
segment combined with isophorone diisocyanate (IPDI) as the hard
segment for preparation of HA/PU scaffold. This paper aims at a
twofold objective, on one hand, to study the cytocompatibility of
this novel scaffold, on the other, to evaluate the effect of the scaffold
on bone regeneration in vivo.

2. Materials and methods

2.1. Materials

Hydroxyapatite precipitate was synthesized in our lab [8]. The
obtained HA slurry was then spray-dried, and screened through a
mesh sieve (w75 mm). Castor oil, glycerol and isophorone diiso-
cyanate were supplied by Aladdin Co. Ltd., China. F-12 nutrient
mixture and newborn calf serum (cell-culture grade) were from
Invitrogen Corporation, USA. Methylthiazolyldiphenyl-tetrazolium
bromide (MTT) reagent (purity: >98%) was from Amresco, USA.
Live/dead viability/cytotoxicity kit was fromMolecular Probes, USA.
1,4-butanediol (BDO) and stannous octoate were from Chengdu
Kelong Co. Ltd., China and of analytical grade.

2.2. Preparation and characterization of scaffold

The HA/GCPU porous scaffold was synthesized by glyceride of
castor oil and isophorone diisocyanate (IPDI) with addition of
.
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hydroxyapatite (HA) powder. Firstly, glyceride of castor oil (GCO)
was prepared by transesterification of castor oil with glycerol ac-
cording to the literature [9]. The reaction was carried out at 200 �C
for 1 h while stirring, the mole ratio of glycerol to castor oil was
2.5:1, CaO was used as catalyst. The porous scaffold with 40 wt% HA
was prepared in a three-necked flask at 70 �C under nitrogen at-
mosphere. GCO and IPDI were mixed thoroughly by a ratio of eOH
to eNCO at 1:1.1, then a certain HA powder was added. Stannous
octoate, BDO and distilled water were added successively as cata-
lyst, chain extender and foaming agent. The final mixture turns into
HA/GCPU scaffold after dumping into amold and foamed in an oven
at 110 �C for 4 h. The scaffold morphology was observed by scan-
ning electron microscopy (SEM) (JSM-6500LV, JEOL, Japan) at 30 kV
after gold coated. The compressive strength of the scaffold was
tested according to the procedure set by the ASTM D695-96. The
scaffold porosity wasmeasured by the liquid displacementmethod.
The scaffold with a known volume (V) and weight (M) was
immersed in distilled water. A series of evacuationerepressuriza-
tion cycles was conducted to force the distilled water to penetrate
and fill the pores of the scaffolds. After that the weight of the
scaffold was recorded as M1. The porosity was calculated according
to the following formula: porosity ¼ (M1 - M)/V � 100%. Five
samples were tested in each group.
2.3. In vitro cell culture

ROS 17/2.8 cells were provided by the West China School of
Stomatology, Sichuan University. The cells were derived from rat
osteosarcoma and expressed the characteristic features of osteo-
blasts. Osteoblastic ROS 17/2.8 cells were seeded on the surface of
the scaffold samples (1 � 1 � 0.1 cm3, 1 � 104 cells/sample). The
scaffold/cells constructs were incubated in a 5% CO2 incubator at
37 �C. After 7 days, cell morphology on the HA/GCPU scaffold was
observed by SEM. Cell viability was evaluated using the Live/Dead
viability/cytotoxicity assay (Molecular Probes, USA), and the cells
were imaged using fluorescence microscope (TE2000-U, Nikon,
Japan). Cell proliferation was assessed by MTT assay. The absor-
bance was measured at 490 nm on a microplate reader (1420,
Perkin Elmer Co. Ltd., USA) after 1, 4, 7 day (s). Osteocalcin levels in
the culture media were evaluated by an assay reagent kit
(Biomedical Technologies Inc., MA) after 1, 4, 7 day (s).
2.4. In vivo animal studies

To investigate the osteogenesis of the composite porous scaffold,
female SpragueeDawley rats weighing between 160 and 200 g
were used in the experiment. The HA/GCPU scaffold with 40 wt%
HAwas sterilized by ethylene oxide before use. The ROS 17/2.8 cells
(105 cells/mL) were injected on the HA/GCPU scaffolds. The cell-
scaffold constructs were kept in an incubator at 37 �C for 7 days.
A total of sixteen SD rats were divided into two groups. A bone
defect with a diameter of 3mmwas created in the region of femoral
condyle. In group 1, the defects were implanted with cylindrical
HA/GCPU scaffolds (V3 mm � 3 mm), and in group 2, HA/GCPU
scaffolds seeded with ROS 17/2.8 cells were implanted into the
defects. Thenmusculature and skinwere closed with nylon sutures.
Gentamicin (10 mg/kg) was administered for 3 days post-
operatively to prevent infection. The rats were allowed to move
freely in their cages and sacrificed at 4 and 8 weeks respectively.
The femurs were dissected and fixed in 4% phosphate-buffered
paraformaldehyde. After that scaffold samples with surrounding
bone were decalcified, dehydrated in a series of gradient ethanol
solutions, embedded in paraffin, and subsequently sectioned to
slices of 5mm in thickness. The sections were processed forMasson
staining, and examined under light microscope (TE2000-U, Nikon,
Japan).

2.5. Statistical analysis

The datawere expressed as the mean� standard deviation (SD).
Statistical significance was determined using SPSS 10.0. Statistical
comparison of two experimental groups was performed using the
Student’s t-test. p < 0.05 was considered to be significant.

3. Results and discussion

The digital and SEM images in Fig. 1 clearly show the macrog-
raphy andmicrograph of 40 wt% HA/GCPU scaffold. The scaffold has
an average pore size of 500 mm and maintains an interconnected
porous structure. The scaffold porosity and compressive strength
are measured for about 60% and 4.6 MPa, respectively. The pore size
and strength are suitable for the use of bone tissue engineering.

The synthesis of scaffolds for bone tissue engineering must
consider the nature of raw materials [10]. Polyols, such as poly-
esters and polyethers, are usually used to provide flexible segment
and cross-linking site for the resulting polymers [11]. Castor oil as a
renewable source is also a polyol and recently adopted in the
synthesis of PU polymer and scaffolds. However, the shortage of
using castor oil is the low number of hydroxyl groups in its mo-
lecular structure. Compared to castor oil, the glyceride of castor oil
can provide more hydroxyl groups (from 155 to 288 of the hydroxyl
value) for reaction with isocyanate, therefore, the efficiency of the
polymerization can be greatly improved, resulting in an increase of
the scaffold compressive strength (from hundreds of kPa to
4.6 MPa). Moreover, the HA filler in the PUmatrix is also helpful for
the increase of mechanical strength [12]. The results show that the
novel synthetic route of HA/GCPU composite scaffolds is promising
for bone tissue engineering.

SEM images in Fig. 2A, B show the morphology of ROS 17/
2.8 cells adhered on the surface of scaffold after 7 days of culture.
The cells with typical osteoblastic morphology have formed cell
sheet on the scaffold and spread in the pores of scaffold. This means
the scaffold does not inhibit cell adhesion and proliferation. It is
believed that the HA filler may provide plenty of cellular binding
sites and the porous scaffold can offer ample space for cell
ingrowth, which are the major approach to realize enhanced
cellular activity and cytocompatibility of scaffolds [13]. The fluo-
rescent image in Fig. 2C demonstrates an efficient cell attachment
on the scaffold and a high affinity of the scaffold to the osteoblastic
cells. Fig. 2D summarizes the metabolic activity of ROS 17/2.8 cells
cultured on the scaffolds for 1, 4 and 7 day (s). During the 7 days of
culturing, the cell metabolic activity and osteocalcin production
increase significantly with the incubation time (p < 0.05). The re-
sults indicate that the HA/GCPU scaffold has good cytocompatibility
and can provide favorable 3D microenvironment for cells.

The histological images are presented in Fig. 3. No inflammatory
response is observed at 4 weeks. The newly formed bone tissue has
appeared around the scaffold and in the pores of scaffold. At 8
weeks, there is more new bone formation around and within the
porous scaffold, and no adverse inflammatory response can be
noticed. In contrast, the amount of new bone is more in cell seeded
scaffold than unseeded scaffold. Although the cell seeded group
seems to perform slightly better than unseeded group, both scaf-
folds show good in vivo osteogenesis.

4. Conclusion

Porous HA/GCPU composite scaffold has been synthesized using
glyceride of castor oil, aliphatic IPDI and bioactive HA powder. Such



Fig. 1. Digital (A) and SEM (B) images of 40 wt% HA/GCPU scaffold.

Fig. 2. SEM image of ROS 17/2.8 cells cultured on 40 wt% HA/GCPU scaffold for 7 days (A) and higher magnification image (B), fluorescent image (C), and MTT assay for cell
proliferation and osteocalcin content in media (D). (Note: same symbols represent no significant difference (p > 0.05); different symbols represent significant difference (p < 0.05).)

Fig. 3. Histological sections (Masson staining) of HA/GCPU and cell seeded HA/GCPU scaffolds at 4 (A, B) and 8 (E, F) weeks. (C, D) and (G, H) corresponding to each left box. S-
scaffold, NB-new bone, B-bone.
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scaffold with optimized mechanical and biological properties, i.e.,
good compressive strength, interconnected porous structure, high
affinity to osteoblastic cells and bone-bonding ability via HA
component, could be good candidate for bone repair and regener-
ation. Further animal experiments should be carried out on bone
regeneration and scaffold degradability.
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