1,518 research outputs found

    Three candidate election strategy

    Full text link
    The probability of a given candidate winning a future election is worked out in closed form as a function of (i) the current support rates for each candidate, (ii) the relative positioning of the candidates within the political spectrum, (iii) the time left to the election, and (iv) the rate at which noisy information is revealed to the electorate from now to the election day, when there are three or more candidates. It is shown, in particular, that the optimal strategy for controlling information can be intricate and nontrivial, in contrast to a two-candidate race. A surprising finding is that for a candidate taking the centre ground in an electoral competition among a polarised electorate, certain strategies are fatal in that the resulting winning probability for that candidate vanishes identically.Comment: 17 pages, 6 figures, version to appear in the Royal Society Open Scienc

    Bias and angular dependence of spin-transfer torque in magnetic tunnel junctions

    Full text link
    We use spin-transfer-driven ferromagnetic resonance (ST-FMR) to measure the spin-transfer torque vector T in MgO-based magnetic tunnel junctions as a function of the offset angle between the magnetic moments of the electrodes and as a function of bias, V. We explain the conflicting conclusions of two previous experiments by accounting for additional terms that contribute to the ST-FMR signal at large |V|. Including the additional terms gives us improved precision in the determination of T(V), allowing us to distinguish among competing predictions. We determine that the in-plane component of has a weak but non-zero dependence on bias, varying by 30-35% over the bias range where the measurements are accurate, and that the perpendicular component can be large enough to be technologically significant. We also make comparisons to other experimental techniques that have been used to try to measure T(V).Comment: 30 pages, 8 figures. Expanded with additional data and discussion. In press at PR

    Entanglement-assisted tomography of a quantum target

    Full text link
    We study the efficiency of quantum tomographic reconstruction where the system under investigation (quantum target) is indirectly monitored by looking at the state of a quantum probe that has been scattered off the target. In particular we focus on the state tomography of a qubit through a one-dimensional scattering of a probe qubit, with a Heisenberg-type interaction. Via direct evaluation of the associated quantum Cram\'{e}r-Rao bounds, we compare the accuracy efficiency that one can get by adopting entanglement-assisted strategies with that achievable when entanglement resources are not available. Even though sub-shot noise accuracy levels are not attainable, we show that quantum correlations play a significant role in the estimation. A comparison with the accuracy levels obtainable by direct estimation (not through a probe) of the quantum target is also performed.Comment: 22 pages, 9 figure

    Purification through Zeno-like Measurements

    Full text link
    A series of frequent measurements on a quantum system (Zeno-like measurements) is shown to result in the ``purification'' of another quantum system in interaction with the former. Even though the measurements are performed on the former system, their effect drives the latter into a pure state, irrespectively of its initial (mixed) state, provided certain conditions are satisfied.Comment: REVTeX4, 4 pages, 1 figure; to be published in Phys. Rev. Lett. (2003

    Parallel pumping of magnetic vortex gyrations in spin-torque nano-oscillators

    Full text link
    We experimentally demonstrate that large magnetic vortex oscillations can be parametrically excited in a magnetic tunnel junction by the injection of radio-frequency (rf) currents at twice the natural frequency of the gyrotropic vortex core motion. The mechanism of excitation is based on the parallel pumping of vortex motion by the rf orthoradial field generated by the injected current. Theoretical analysis shows that experimental results can be interpreted as the manifestation of parametric amplification when rf current is small, and of parametric instability when rf current is above a certain threshold. By taking into account the energy nonlinearities, we succeed to describe the amplitude saturation of vortex oscillations as well as the coexistence of stable regimes.Comment: Submitted to Phys. Rev. Let

    Fermi-LAT and Suzaku Observations of the Radio Galaxy Centaurus B

    Get PDF
    Centaurus B is a nearby radio galaxy positioned in the Southern hemisphere close to the Galactic plane. Here we present a detailed analysis of about 43 months of accumulated Fermi-LAT data of the gamma-ray counterpart of the source initially reported in the 2nd Fermi-LAT catalog, and of newly acquired Suzaku X-ray data. We confirm its detection at GeV photon energies, and analyze the extension and variability of the gamma-ray source in the LAT dataset, in which it appears as a steady gamma-ray emitter. The X-ray core of Centaurus B is detected as a bright source of a continuum radiation. We do not detect however any diffuse X-ray emission from the known radio lobes, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. Two scenarios that connect the X-ray and gamma-ray properties are considered. In the first one, we assume that the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. In this case, modeling the inverse-Compton emission shows that the observed gamma-ray flux of the source may in principle be produced within the lobes. This association would imply that efficient in-situ acceleration of the radiating electrons is occurring and that the lobes are dominated by the pressure from the relativistic particles. In the second scenario, with the diffuse X-ray emission well below the Suzaku upper limits, the lobes in the system are instead dominated by the magnetic pressure. In this case, the observed gamma-ray flux is not likely to be produced within the lobes, but instead within the nuclear parts of the jet. By means of synchrotron self-Compton modeling we show that this possibility could be consistent with the broad-band data collected for the unresolved core of Centaurus B, including the newly derived Suzaku spectrum.Comment: Accepted for publication in A&A. 11 page

    Influence of dissipation on the extraction of quantum states via repeated measurements

    Full text link
    A quantum system put in interaction with another one that is repeatedly measured is subject to a non-unitary dynamics, through which it is possible to extract subspaces. This key idea has been exploited to propose schemes aimed at the generation of pure quantum states (purification). All such schemes have so far been considered in the ideal situations of isolated systems. In this paper, we analyze the influence of non-negligible interactions with environment during the extraction process, with the scope of investigating the possibility of purifying the state of a system in spite of the sources of dissipation. A general framework is presented and a paradigmatic example consisting of two interacting spins immersed in a bosonic bath is studied. The effectiveness of the purification scheme is discussed in terms of purity for different values of the relevant parameters and in connection with the bath temperature.Comment: 10 pages, 3 figure

    Vertical current induced domain wall motion in MgO-based magnetic tunnel junction with low current densities

    Full text link
    Shifting electrically a magnetic domain wall (DW) by the spin transfer mechanism is one of the future ways foreseen for the switching of spintronic memories or registers. The classical geometries where the current is injected in the plane of the magnetic layers suffer from a poor efficiency of the intrinsic torques acting on the DWs. A way to circumvent this problem is to use vertical current injection. In that case, theoretical calculations attribute the microscopic origin of DW displacements to the out-of-plane (field-like) spin transfer torque. Here we report experiments in which we controllably displace a DW in the planar electrode of a magnetic tunnel junction by vertical current injection. Our measurements confirm the major role of the out-of-plane spin torque for DW motion, and allow to quantify this term precisely. The involved current densities are about 100 times smaller than the one commonly observed with in-plane currents. Step by step resistance switching of the magnetic tunnel junction opens a new way for the realization of spintronic memristive devices

    Chandra detection of diffuse X-ray emission from the globular cluster Terzan 5

    Full text link
    Terzan 5, a globular cluster (GC) prominent in mass and population of compact objects, is searched for diffuse X-ray emission, as proposed by several models. We analyzed the data of an archival Chandra observation of Terzan 5 to search for extended diffuse X-ray emission outside the half-mass radius of the GC. We removed detected point sources from the data to extract spectra from diffuse regions around Terzan 5. The Galactic background emission was modeled by a 2-temperature thermal component, which is typical for Galactic diffuse emission. We detected significant diffuse excess emission above the particle background level from the whole field-of-view. The surface brightness appears to be peaked at the GC center and decreases smoothly outwards. After the subtraction of particle and Galactic background, the excess spectrum of the diffuse emission between the half-mass radius and 3' can be described by a power-law model with photon index Γ\Gamma = 0.9±\pm0.5 and a surface flux of FX_X = (1.17±\pm0.16) 107^{-7} erg s1^{-1} cm2^{-2} sr1^{-1} in the 1--7 keV band. We estimated the contribution from unresolved point sources to the observed excess to be negligible. The observations suggest that a purely thermal origin of the emission is less likely than a non-thermal scenario. However, from simple modeling we cannot identify a clearly preferred scenario.Comment: 6 pages, 4 figures, accepted for publication by A&

    Spin Diode Based on Fe/MgO Double Tunnel Junction

    Full text link
    We demonstrate a spin diode consisting of a semiconductor free nano-scale Fe/MgO-based double tunnel junction. The device exhibits a near perfect spin-valve effect combined with a strong diode effect. The mechanism consistent with our data is resonant tunneling through discrete states in the middle ferromagnetic layer sandwiched by tunnel barriers of different spin-dependent transparency. The observed magneto-resistance is record high, ~4000%, essentially making the structure an on/off spin-switch. This, combined with the strong diode effect, ~100, offers a new device that should be promising for such technologies as magnetic random access memory and re-programmable logic.Comment: 14 page
    corecore