We use spin-transfer-driven ferromagnetic resonance (ST-FMR) to measure the
spin-transfer torque vector T in MgO-based magnetic tunnel junctions as a
function of the offset angle between the magnetic moments of the electrodes and
as a function of bias, V. We explain the conflicting conclusions of two
previous experiments by accounting for additional terms that contribute to the
ST-FMR signal at large |V|. Including the additional terms gives us improved
precision in the determination of T(V), allowing us to distinguish among
competing predictions. We determine that the in-plane component of has a weak
but non-zero dependence on bias, varying by 30-35% over the bias range where
the measurements are accurate, and that the perpendicular component can be
large enough to be technologically significant. We also make comparisons to
other experimental techniques that have been used to try to measure T(V).Comment: 30 pages, 8 figures. Expanded with additional data and discussion. In
press at PR