16 research outputs found

    Study on risk control of water inrush in tunnel construction period considering uncertainty

    Get PDF
    Water inrush risk is a bottleneck problem affecting the safety and smooth construction of tunnel engineering works, so the risk control of water inrush is important, however, geological uncertainty and artificial uncertainty always accompany tunnel construction. Uncertainty will not only affect the accuracy of water inrush risk assessment results, but also affect the reliability of water inrush risk decision-making results. How to control the influence of uncertainty on water inrush risk is key to solving the problem of water inrush risk control. Based on the definition of improved risk, a risk analysis model of water inrush based on a fuzzy Bayesian network is constructed. The main factors affecting the risk of water inrush are determined by sensitivity analysis, and possible schemes in risk control of water inrush are proposed. Based on the characteristics of risk control of water inrush in a tunnel, a multi-attribute group decision-making model is constructed to determine the optimal water inrush risk control scheme, so that the optimal scheme for reducing uncertainty in risk control of water inrush is determined. Finally, this system is applied to Shiziyuan Tunnel. The results show that the proposed risk control system for reducing uncertainty of water inrush is efficacious. First published online 21 August 201

    Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to pseudomonas aeruginosa infection

    Get PDF
    Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages infected with P. aeruginosa: untreated < treated with GM-CSF < treated with IFN-γ < treated with GM-CSF and IFN-γ

    Matrix Metallopeptidase-Gene Signature Predicts Stage I Lung Adenocarcinoma Survival Outcomes

    No full text
    Tumor recurrence poses a significant challenge to the clinical management of stage I lung adenocarcinoma after curative surgical resection. Matrix metalloproteinases (MMPs) increase expression and correlate with recurrence and metastasis in surgically resected non-small cell lung cancer. However, the impact of MMPs on survival outcome varies, and their roles in patients with stage I lung adenocarcinoma remain unclear. In two discovery cohorts, we first analyzed 226 stage I–II lung adenocarcinoma cases in the GSE31210 cohort using a clustering-based method and identified a 150-gene MMP cluster with increased expression in tumors associated with worse survival outcomes. A similar analysis was performed on 517 lung adenocarcinoma cases in the Cancer Genome Atlas cohort. A 185-gene MMP cluster was identified, which also showed increased expression in tumors and correlated with poor survival outcomes. We further streamlined from the discovery cohorts a 36-gene MMP signature significantly associated with recurrence and worse overall survival in patients with stage I lung adenocarcinoma after surgical resection. After adjusting for covariates, the high MMP-gene signature expression remained an independent risk factor. In addition, the MMP-gene signature showed enrichment in epidermal growth factor receptor wild-type lung tumors, especially for those with Kirsten rat sarcoma virus mutations. Using an independent validation cohort, we further validated the MMP-gene signature in 70 stage I lung adenocarcinoma cases. In conclusion, MMP-gene signature is a potential predictive and prognostic biomarker to stratify patients with stage I lung adenocarcinoma into subgroups based on their risk of recurrence for aiding physicians in deciding the personalized adjuvant therapeutics

    Relationship between Drought and Precipitation Heterogeneity: An Analysis across Rain-Fed Agricultural Regions in Eastern Gansu, China

    No full text
    Based on daily meteorological data from 55 meteorological stations in eastern Gansu from 1960 to 2017, the characteristics of the drought process and precipitation heterogeneity were analyzed, and the relationship between drought and precipitation heterogeneity was evaluated. Results showed that there were 1–3 drought processes in the study area every year. Drought processes in the eastern and north-central regions were more frequent than those in other regions. Droughts were mainly manifested as intra-seasonal droughts, especially across the spring and summer. PCD (Precipitation Concentration Degree, the concentration degree of the precipitation at a certain time) ranged from 0.2 to 0.7 in the area. PCD increased in spring and autumn but decreased in summer and winter for most regions from 1960 to 2017. PCP (Precipitation Concentration Period, the shortest time which the precipitation was concentrated in) was from late April to early May in spring, mid-to-late July in summer, mid-September in autumn, and late January in winter. In the last 58 years, PCP has remained consistent in most regions, varying by approximately 10 days. In addition to insignificant changes in winter, the days with light and moderate rain presented a declining trend, especially in summer and autumn. The larger the PCD, the fewer the days with light and moderate rain, and the stronger the drought intensity. However, in the east-central region, the larger the PCD in autumn, the weaker was the drought intensity. This difference is related to the PCP and the evapotranspiration. Additionally, the later the PCP, the stronger was the drought intensity, particularly in summer and autumn. When PCD was ≥0.5 in spring and ≥0.4 in summer, the PCP was after May and August in spring and summer, respectively. Droughts appeared in 28–56% of periods when seasonal precipitation was above normal. When PCD was ≥0.5 in autumn and PCP was in early and middle September, droughts appeared in 7% of periods when precipitation was above normal. Our results show that although less precipitation is the leading influencing factor of drought in the dry rain-fed agricultural areas, the influence of precipitation heterogeneity should be also considered for the prediction and diagnosis of seasonal drought

    Integrating Remote-Sensing and Assimilation Data to Improve Air Temperature on Hot Weather in East China

    No full text
    Land-surface characteristics (LSCs) and land-soil moisture conditions can modulate energy partition at the land surface, impact near-surface atmosphere conditions, and further affect land–atmosphere interactions. This study investigates the effect of land-surface-characteristic parameters (LSCPs) including albedo, leaf-area index (LAI), and soil moisture (SM) on hot weather by in East China using the numerical model. Simulations using the Weather Research and Forecasting (WRF) Model were conducted for a hot weather event with a high spatial resolution of 1 km in domain 3 by using ERA-Interim forcing fields on 20 July 2017 until 16:00 UTC on 25 July 2017. The satellite-based albedo and LAI, and assimilation-based soil-moisture data of high temporal–spatial resolution, which are more accurate to match fine weather forecasts and high-resolution simulations, were used to update the default LSCPs. A control simulation with the default LSCPs (WRF_CTL), a main sensitivity simulation with the updated LSCP albedo, LAI and SM (WRF_CHAR), and a series of other sensitivity simulations with one or two updated LSCPs were performed. Results show that WRF_CTL could reproduce the spatial distribution of hot weather, but overestimated air temperature (Ta) and maximal air temperature (Tamax) with a warming bias of 1.05 and 1.32 °C, respectively. However, the WRF_CHAR simulation reduced the warming bias, and improved the simulated Ta and Tamax with reducing relative biases of 33.08% and 29.24%, respectively. Compared to the WRF_CTL, WRF_CHAR presented a negative sensible heat-flux difference, positive latent heat flux, and net radiation difference of the area average. LSCPs modulated the partition of available land-surface energy and then changed the air temperature. On the basis of statistical-correlation analysis, the soil moisture of the top 10 cm is the main factor to improve warming bias on hot weather in East China

    Evaluation of Three Reanalysis Soil Temperature Datasets with Observation Data over China

    No full text
    Soil temperature is a crucial parameter in surface emissions of carbon, water, and energy exchanges. This study utilized the soil temperature of 836 national basic meteorological observing stations over China to evaluate three soil temperature products. Soil temperature data from the China Meteorology Administration Land Data Assimilation System (CLDAS), European Centre for Medium-Range Weather Forecasts (ERA-Interim), and Global Land Data Assimilation System (GLDAS) during 2017 are evaluated. The results showed that soil temperature reanalysis datasets display a significant north-to-south difference over eastern China with generally underestimated magnitudes. CLDAS data perform soil temperature assessment best at different depths and can be reproduced well in most areas of China. CLDAS slightly overestimates soil temperature in summer. The most significant deviation of ERA-Interim (GLDAS) appears in summer (summer and autumn). As soil depth increases, the soil temperature errors of all three datasets increase. The CLDAS represents the soil temperature over China but owns a more considerable bias in barren or sparsely vegetated croplands. ERA-Interim performs poorest in urban and built-up and barren or sparsely vegetated areas. GLDAS overall owns an enormous bias at the mixed forest, grassland, and croplands areas, which should be improved, especially in summer. However, it performs better in open shrublands and barren or sparsely vegetated areas. The ST of mixed forests shows better results in the south region than the north region. For grasslands, smaller MEs are located in the north and northwest regions. The ST of croplands shows the poorest performance over the northwest region

    Brewer–Dobson Circulation: Recent-Past and Near-Future Trends Simulated by Chemistry-Climate Models

    No full text
    Based on data from 16 chemistry-climate models (CCMs) and separate experimental results using a state-of-the-art CCM, the trends in the Brewer–Dobson circulation (BDC) during the second half of the 20th century (1960–2000) and the first half of the 21st century (2001–2050) are examined. From the ensemble mean of the CCMs, the BDC exhibits strengthening trends in both the 20th and 21st centuries; however, the acceleration rates of tropical upwelling and southern downwelling during 2001–2050 are smaller than those during 1960–2000, while the acceleration rate of the northern downward branch of the BDC during 2001–2050 is slightly larger than that during 1960–2000. The differences in the extratropical downwelling trends between the two periods are closely related to changes in planetary-wave propagation into the stratosphere caused by the combined effects of increases in the concentrations of greenhouse gases (GHGs) and changes in stratospheric ozone. Model simulations demonstrate that the response of southern downwelling to stratospheric ozone depletion is larger than that to the increase in GHGs, but that the latter plays a more important role in the strengthening of northern downwelling. This result suggests that, under the expected future climate, northern downwelling will play a more important role in balancing tropical upwelling

    CoFlux:Robustly Correlating KPIs by Fluctuations for Service Troubleshooting

    No full text
    Internet-based service companies monitor a large number of KPIs (Key Performance Indicators) to ensure their service quality and reliability. Correlating KPIs by fluctuations reveals interactions between KPIs under anomalous situations and can be extremely useful for service troubleshooting. However, such a KPI flux-correlation has been little studied so far in the domain of Internet service operations management. A major challenge is how to automatically and accurately separate fluctuations from normal variations in KPIs with different structural characteristics (such as seasonal, trend and stationary) for a large number of KPIs. In this paper, we propose CoFlux, an unsupervised approach, to automatically (without manual selection of algorithm fitting and parameter tuning) determine whether two KPIs are correlated by fluctuations, in what temporal order they fluctuate, and whether they fluctuate in the same direction. CoFlux's robust feature engineering and robust correlation score computation enable it to work well against the diverse KPI characteristics. Our extensive experiments have demonstrated that CoFlux achieves the best Fl-Scores of 0.84 (0.90),0.92 (0.95), 0.95 (0.99), in answering these three questions, in the two real datasets from a top global Internet company, respectively. Moreover, we showed that CoFlux is effective in assisting service troubleshooting through the applications of alert compression, recommending Top N causes, and constructing fluctuation propagation chains
    corecore