130 research outputs found

    Characteristics of thoracic aortic aneurysm rupture in vitro

    Get PDF
    International audienceAscending thoracic aortic aneurysms (ATAAs) are focal dilatations in the aorta that are prone to rupture or dissection. To accurately evaluate the rupture risk, one must know the local mechanical conditions at the rupture site and understand how rupture is triggered in a layered fibrous media. A challenge facing experimental studies of ATAA rupture is that the ATAA tissue is highly heterogeneous; experimental protocols that operate under the premise of tissue homogeneity will have difficulty delineating the location conditions. In this work, we employed a previously established pointwise identification method to characterize wall stress, strain, and property distributions to a sub-millimeter resolution. Based on the acquired field data, we obtained the local mechanical properties at the rupture site in nine ATAA tissue samples. The rupture stress, ultimate strain, energy density, and the toughness of the tested samples were also reported. Our results show that the direction of the rupture is aligned with the direction of maximum stiffness, indicating that higher stiffness is not always related to higher strength. It was also found that the rupture generally occurs at a location of highest stored energy. As a higher stiffness and higher strain energy indicate a larger recruitment of collagen fibers in the tissue at the location and along the direction of rupture, the recruitment of collagen fibers in the deformation of the tissue is probably essential in ATAA rupture

    A Blue Native-PAGE analysis of membrane protein complexes in Clostridium thermocellum

    Get PDF
    Background Clostridium thermocellum is a Gram-positive thermophilic anaerobic bacterium with the unusual capacity to convert cellulosic biomass into ethanol and hydrogen. Identification and characterization of protein complexes in C. thermocellum are important toward understanding its metabolism and physiology. Results A two dimensional blue native/SDS-PAGE procedure was developed to separate membrane protein complexes of C. thermocellum. Proteins spots were identified by MALDI-TOF/TOF Mass spectrometry. 24 proteins were identified representing 13 distinct protein complexes, including several putative intact complexes. Interestingly, subunits of both the F1-F0-ATP synthase and the V1-V0-ATP synthase were detected in the membrane sample, indicating C. thermocellum may use alternative mechanisms for ATP generation. Conclusion Two dimensional blue native/SDS-PAGE was used to detect membrane protein complexes in C. thermocellum. More than a dozen putative protein complexes were identified, revealing the simultaneous expression of two sets of ATP synthase. The protocol developed in this work paves the way for further functional characterization of these protein complexes

    An Ultra-wide-band Tightly Coupled Dipole Reflectarray Antenna

    Get PDF
    A novel ultra-wide-band tightly coupled dipole reflectarray (TCDR) antenna is presented in this paper. This reflectarray antenna consists of a wide-band feed and a wide-band reflecting surface. The feed is a log-periodic dipole array antenna. The reflecting surface consists of 26×11 unit cells. Each cell is composed of a tightly coupled dipole and a delay line. The minimum distance between adjacent cells is 8mm, which is about 1/10 wavelength at the lowest operating frequency. By combining the advantages of reflectarray antennas and those of tightly coupled array antennas, the proposed TCDR antenna achieves ultra-wide bandwidth with reduced complexity and fabrication cost. A method to minimize the phase errors of the wideband reflectarray is also developed and a concept of “equivalent distance delay” is introduced to design the unit cell elements. To verify the simulations, a prototype operating from 3.4 to 10.6 GHz is simulated and fabricated. Good agreement between simulated and measured results is observed. Within the designed frequency band, the radiation pattern of the TCDR antenna is stable and the main beam of the antenna is not distorted or split. The side lobe levels of the radiation patterns are below -11.7 dB and the cross-polarization levels are below -20 dB in the entire operating band. This TCDR antenna combines the reflectarray and tightly coupled arrays for the 1st time and achieves the widest bandwidth (in terms of stable radiation patterns and low sidelobes) reported so far. This work is expected to have significant impact on antenna development for broadband satellite communications and the base stations in 5G mobile communications

    Effect of Low-Density Lipoprotein Cholesterol Goal Achievement on Vascular Physiology Evaluated by Quantitative Flow Ratio in Patients Who Underwent Percutaneous Coronary Intervention

    Get PDF
    Purpose: The change in coronary physiology from lipid-lowering therapy (LLT) lacks an appropriate method of examination. Quantitative flow ratio (QFR) is a novel angiography-based approach allowing rapid assessment of coronary physiology. This study sought to determine the impact of low-density lipoprotein cholesterol (LDL-C) goal achievement on coronary physiology through QFR.Methods: Cases involving percutaneous coronary intervention (PCI) and 1-year angiographic follow-up were screened and assessed by QFR analysis. Patients were divided into two groups according to the LDL-C level at the 1-year follow-up: (1) goal-achievement group (LDL-C < 1.8 mmol/L or reduction of ≥50%, n = 146, lesion = 165) and (2) non-achievement group (n = 286, lesion = 331). All QFR data and major adverse cardiovascular and cerebrovascular events (MACCEs) at 1 year were compared between groups.Results: No differences between the groups in quantitative coronary angiography (QCA) data or QFR post-PCI were found. At the 1-year follow-up, lower percentage diameter stenosis (DS%) and percentage area stenosis (AS%) were recorded in the goal-achievement group (27.89 ± 10.16 vs. 30.93 ± 12.03, p = 0.010, 36.57 ± 16.12 vs. 41.68 ± 17.39, p = 0.003, respectively). Additionally, a better change in QFR was found in the goal-achievement group (0.003 ± 0.068 vs. −0.018 ± 0.086, p = 0.007), with a lower incidence of physiological restenosis and MACCEs (2.1 vs. 8.4%, p = 0.018, 5.4 vs. 12.6%, p = 0.021, respectively).Conclusion: Evaluated by QFR, patients who achieved the LDL-C goal appear to have a better coronary physiological benefit. This group of patients also has a better clinical outcome

    Rice plants respond to ammonium‐stress by adopting a helical root growth pattern

    Get PDF
    High levels of ammonium nutrition reduce plant growth and different plant species have developed distinct strategies to maximize ammonium acquisition while alleviate ammonium toxicity through modulating root growth. Up to now, the mechanism underlying plant tolerance or sensitivity towards ammonium remain unclear. Rice uses ammonium as its main N source. Here we show that ammonium supply restricts rice root elongation and induces a helical growth pattern, which is attributed to root acidification resulting from ammonium uptake. Ammonium-induced low pH triggers asymmetric auxin distribution in rice root tips through changes in auxin signaling, thereby inducing a helical growth response. Blocking auxin signaling completely inhibited this root response. In contrast, this root response is not activated in ammonium-treated Arabidopsis. Acidification of Arabidopsis roots leads to the protonation of IAA, and dampening the intracellular auxin signaling levels that are required for maintaining root growth. Our study suggests a different mode of action by ammonium on the root pattern and auxin response machinery in rice versus Arabidopsis, and the rice-specific helical root response towards ammonium is an expression of the ability of rice in moderating auxin signaling and root growth to utilize ammonium while confronting acidic stress

    Domiciliary transcutaneous electrical stimulation in patients with obstructive sleep apnoea and limited adherence to continuous positive airway pressure therapy: a single-centre, open-label, randomised, controlled phase III trial

    Get PDF
    Background: Hypoglossal nerve stimulation (HNS) for obstructive sleep apnoea (OSA) is a novel way to manage the condition. We hypothesised that in patients with OSA and limited adherence to continuous positive airway pressure (CPAP) therapy, domiciliary transcutaneous electrical stimulation (TESLA) would control sleep apnoea and provide health benefits. Methods: We undertook a single-centre, open-label, randomised, controlled phase III trial in patients with OSA (apnoea-hypopnoea-index [AHI] 5-35 h-1), a BMI of 18.5-32 kg∗m-2, and a documented lack of adherence to CPAP therapy (<4 h∗night-1) at Guy's & St Thomas' NHS Foundation Trust (hospital), UK. Patients were randomly assigned (1:1) using minimisation (gender and OSA severity) to receive TESLA or usual care (CPAP) for at least 3 months; sleep study analysis was provided without knowledge of the assignment arm. The primary outcome was change in AHI at 3-months. The primary outcome and safety were analysed in the intention-to-treat population. Data are reported as median (interquartile range), unless otherwise explained. This trial is registered at ClinicalTrials.gov, NCT03160456. Findings: Between 6 June 2018 and 7 February 2023, 56 participants were enrolled and randomly assigned (29 patients in the intervention group and 27 in the usual care group). Patients were followed up for a median of 3.0 months (IQR 3.0; 10.0). The groups were similar in terms of age (55.8 (48.2; 66.0) vs 59.3 (47.8; 64.4) years), gender (male:female, 19:10 vs 18:9) and BMI (28.7 (26.4; 31.9) vs 28.4 (24.4; 31.9) kg∗m-2). The unadjusted group difference in the Δ AHI was -11.5 (95% CI -20.7; -2.3) h-1 (p = 0.016). Adjusted for the baseline value, the difference was Δ AHI -7.0 (-15.7; 1.8) h-1 (p = 0.12), in favour of the intervention. Minor adverse events were found in one of the participants who developed mild headaches related to the intervention. Interpretation: Domiciliary TESLA can be used safely and effectively in OSA patients with poor adherence to CPAP, with favourable impact on sleepiness and sleep fragmentation. Despite pandemic-related limitations of the amended protocol this trial provides the evidence that TESLA improves clinically meaningful outcomes over the observed follow up period, and the transcutaneous approach is likely to offer an affordable alternative for responders to electrical stimulation in clinical practice. Funding: British Lung Foundation, United Kingdom Clinical Research Collaboration-registered King's Clinical Trials Unit at King's Health Partners. Keywords: CPAP; Genioglossus; Hypoglossal nerve stimulation; Non-CPAP therapy

    Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance

    Full text link
    Radiotherapy is often the most straightforward first line cancer treatment for solid tumors. While it is highly effective against tumors, there is also collateral damage to healthy proximal tissues especially with high doses. The use of radiosensitizers is an effective way to boost the killing efficacy of radiotherapy against the tumor while drastically limiting the received dose and reducing the possible damage to normal tissues. Here, we report the design and application of a good radiosensitizer by using ultrasmall gold nanoclusters with a naturally occurring peptide (e.g., glutathione or GSH) as the protecting shell. The GSH coated gold nanoclusters can escape the RES absorption, leading to a good tumor uptake (8.1% ID/g at 24 h post injection). As a result, the as-designed Au nanoclusters led to a strong enhancement for radiotherapy, as well as a negligible damage to normal tissues. After the treatment, the ultrasmall gold nanoclusters can be efficiently cleared by the kidney, thereby avoiding potential long term side effects caused by the accumulation of gold atoms in the body. Our data suggest that the ultrasmall peptide protected Au nanoclusters are a promising radiosensitizer for cancer radiotherapy.Comment: 15 Pages, 6 Figures, Scientific Reports 5, 201

    Polarization-Reconfigurable Circularly Polarized Planar Antenna Using Switchable Polarizer

    Get PDF
    A novel polarization-reconfigurable planar antenna is presented. The antenna consists of an electronically reconfigurable polarizer integrated with a printed slot. By changing the states of the PIN diodes on the polarizer, the linearly polarized (LP) waves radiated by the slot can be converted to either right-hand circularly polarized (RHCP) or left-hand circularly polarized (LHCP) waves. The polarizer contains 16 unit cells arranged as a 4 × 4 array. The antenna radiates RHCP waves if the PIN diodes on the top side of the polarizer are switched ON, while LHCP waves are radiated if the PIN diodes of the bottom side of the polarizer are switched ON instead. The physical mechanisms of the antenna are discussed and the parametric study is carried out by full-wave simulations. To verify the concept, one prototype at 2.5 GHz is designed, fabricated and measured. Good agreement between the measured and simulated results is obtained. The antenna achieves a gain ? 8.5 dBic in both RHCP and LHCP with aperture efficiency of 70%. Advantages of the proposed design include electronicallyreconfigurable polarizations for RHCP or LHCP, low profile, low cost, high isolation between the DC bias circuit and RF signals, high power handling capability and easy extension to large-scale arrays without increasing the complexity of the DC bias circuit. To the best knowledge of the authors, this is the first report of an electronically polarization-reconfigurable circularly polarized antenna with a single-substrate polarizer

    Solenoid-free current drive via ECRH in EXL-50 spherical torus plasmas

    Full text link
    As a new spherical tokamak (ST) designed to simplify engineering requirements of a possible future fusion power source, the EXL-50 experiment features a low aspect ratio (A) vacuum vessel (VV), encircling a central post assembly containing the toroidal field coil conductors without a central solenoid. Multiple electron cyclotron resonance heating (ECRH) resonances are located within the VV to improve current drive effectiveness. Copious energetic electrons are produced and measured with hard X-ray detectors, carry the bulk of the plasma current ranging from 50kA to 150kA, which is maintained for more than 1s duration. It is observed that over one Ampere current can be maintained per Watt of ECRH power issued from the 28-GHz gyrotrons. The plasma current reaches Ip>80kA for high density (>5e18me-2) discharge with 150kW ECHR heating. An analysis was carried out combining reconstructed multi-fluid equilibrium, guiding-center orbits of energetic electrons, and resonant heating mechanisms. It is verified that in EXL-50 a broadly distributed current of energetic electrons creates smaller closed magnetic-flux surfaces of low aspect ratio that in turn confine the thermal plasma electrons and ions and participate in maintaining the equilibrium force-balance
    corecore