123 research outputs found

    China’s Factor in Recent Global Commodity Price and Shipping Freight Volatilities

    Get PDF
    This paper attempts an investigation on the impact of Chinas factor on the global commodity and ocean shipping freight volatilities in recent years. It measures Chinas contribution to the incremental demand growth for selected bulk commodities and ocean shipping in the world. Chinas impact on the price volatilities is statistically analyzed through a conventional econometric framework.the world commodity markets, global ocean shipping freights

    Configurable Component Middleware for Distributed Real-Time Systems with Aperiodic and Periodic Tasks

    Get PDF
    Many distributed real-time applications must handle mixed periodic and aperiodic tasks with diverse requirements. However, existing middleware lacks flexible configuration mechanisms needed to manage end-to-end timing easily for a wide range of different applications with both periodic and aperiodic tasks. The primary contribution of this work is the design, implementation and performance evaluation of the first configurable component middleware services for admission control and load balancing of aperiodic and periodic tasks in distributed real-time systems. Empirical results demonstrate the need for and effectiveness of our configurable component middleware approach in supporting different applications with periodic and aperiodic tasks

    Reconfigurable Real-Time Middleware for Distributed Cyber-Physical Systems with Aperiodic Events

    Get PDF
    Different distributed cyber-physical systems must handle aperiodic and periodic events with diverse requirements. While existing real-time middleware such as Real-Time CORBA has shown promise as a platform for distributed systems with time constraints, it lacks flexible configuration mechanisms needed to manage end-to-end timing easily for a wide range of different cyber-physical systems with both aperiodic and periodic events. The primary contribution of this work is the design, implementation and performance evaluation of the first configurable component middleware services for admission control and load balancing of aperiodic and periodic event handling in distributed cyber-physical systems. Empirical results demonstrate the need for, and the effectiveness of, our configurable component middleware approach in supporting different applications with aperiodic and periodic events, and providing a flexible software platform for distributed cyber-physical systems with end-to-end timing constraints

    Customizing Component Middleware for Distributed Real-Time Systems with Aperiodic and Periodic Tasks

    Get PDF
    Many distributed real-time applications must handle mixed aperiodic and periodic tasks with diverse requirements. However, existing middleware lacks flexible configuration mechanisms needed to manage end-to-end timing easily for a wide range of different applications with both aperiodic and periodic tasks. The primary contribution of this work is the design, implementation and performance evaluation of the first configurable component middleware services for admission control and load balancing of aperiodic and periodic tasks in distributed real-time systems. Empirical results demonstrate the need for, and the effectiveness of, our configurable component middleware approach in supporting different applications with aperiodic and periodic tasks

    Real-Time Performance and Middleware on Multicore Linux Platforms

    Get PDF
    An increasing number of distributed real-time applications are running on multicore platforms. However, existing real-time middleware (e.g., Real-Time CORBA) lacks support for scheduling soft real-time tasks on multicore platforms while guaranteeing their time constraints will be satisfied. This paper makes three contributions to the state of the art in real-time system software for multicore platforms. First, it offers what is to our knowledge the first experimental analysis of real-time performance for vanilla Linux primitives on multicore platforms. Second, it presents MC-ORB, the first real-time object request broker (ORB), designed to exploit the features of multicore platforms, with admission control and task allocation services that can provide schedulability guarantees for soft real-time tasks on multicore platforms. Third, it gives a performance evaluation of MC-ORB on a Linux multicore testbed, the results of which demonstrate the efficiency and effectiveness of MC-ORB

    End-to-End Scheduling Strategies for Aperiodic Tasks in Middleware

    Get PDF
    Many mission-critical distributed real-time applicationsmust handle aperiodic tasks with hard end-to-end dead-lines. Existing middleware such as RT-CORBA lacksschedulability analysis and run-time scheduling mecha-nisms that can provide real-time guarantees to aperiodictasks. This paper makes the following contributions to thestate of the art for end-to-end aperiodic scheduling in mid-dleware. First, we compare two approaches to aperiodicscheduling, the deferrable server and the aperiodic utiliza-tion bound, using representative workloads. Numerical re-sults show that the deferrable server analysis is less pes-simistic than the aperiodic utilization bounds when appliedoffline. Second, we propose a practical approach to tuningdeferrable servers for end-to-end tasks. Third, we describedeferrable server mechanisms we have developed for TAO’sfederated event channel. Finally, we present empirical re-sults from a Linux testbed that demonstrate the efficiency ofthose deferrable server mechanisms

    Middleware Support for Aperiodic Tasks in Distributed Real-Time Systems

    Full text link
    Many mission-critical distributed real-time applications must handle aperiodic tasks with end-to-end deadlines. However, existing middleware (e.g., RT-CORBA) lacks schedulability analysis and run-time enforcement mecha-nisms needed to give online real-time guarantees for ape-riodic tasks. The primary contribution of this work is the design, implementation, and performance evaluation of the first realization of deferrable server and admission control mechanisms for aperiodic tasks in middleware. Empirical results on a KURT-Linux testbed demonstrate the efficiency and effectiveness of our deferrable server and admission control mechanisms in TAO’s federated event service.

    Practical Schedulability Analysis for Generalized Sporadic Tasks in Distributed Real-Time Systems

    Get PDF
    Existing off-line schedulability analysis for real-time systems can only handle periodic or sporadic tasks with known minimum inter-arrival times. Modeling sporadic tasks with fixed minimum inter-arrival times is a poor approximation for systems in which tasks arrive in bursts, but have longer intervals between the bursts. In such cases, schedulability analysis based on the existing sporadic task model is pessimistic and seriously overestimates the task\u27s time demand. In this paper, we propose a generalized sporadic task model that characterizes arrival times more precisely than the traditional sporadic task model, and we develop a corresponding schedulability analysis that computes tighter bounds on worst-case response times. Experimental results show that when arrival time jitter increases, the new analysis more effectively guarantees schedulability of sporadic tasks

    A Practical Schedulability Analysis for Generalized Sporadic Tasks in Distributed Real-Time Systems

    Get PDF
    Existing off-line schedulability analysis for real-time systems can only handle periodic or sporadic tasks with known minimum inter-arrival times. Modeling sporadic tasks with fixed minimum inter-arrival times is a poor approximation for systems in which tasks arrive in bursts, but have longer intervals between the bursts. In such cases, schedulability analysis based on the existing sporadic task model is pessimistic and seriously overestimates the task\u27s time demand. In this paper, we propose a generalized sporadic task model that characterizes arrival times more precisely than the traditional sporadic task model, and we develop a corresponding schedulability analysis that computes tighter bounds on worst-case response times. Experimental results show that when arrival time jitter increases, the new analysis more effectively guarantees schedulability of sporadic tasks
    corecore