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Abstract

Many mission-critical distributed real-time applications
must handle aperiodic tasks with hard end-to-end dead-
lines. Existing middleware such as RT-CORBA lacks
schedulability analysis and run-time scheduling mecha-
nisms that can provide real-time guarantees to aperiodic
tasks. This paper makes the following contributions to the
state of the art for end-to-end aperiodic scheduling in mid-
dleware. First, we compare two approaches to aperiodic
scheduling, the deferrable server and the aperiodic utiliza-
tion bound, using representative workloads. Numerical re-
sults show that the deferrable server analysis is less pes-
simistic than the aperiodic utilization bounds when applied
offline. Second, we propose a practical approach to tuning
deferrable servers for end-to-end tasks. Third, we describe
deferrable server mechanisms we have developed for TAO’s
federated event channel. Finally, we present empirical re-
sults from a Linux testbed that demonstrate the efficiency of
those deferrable server mechanisms.

1 Introduction

Many distributed real-time systems must handle a mix
of periodic and aperiodic tasks. Some aperiodic tasks have
hard end-to-end deadlines whose assurance is critical to the
system. For example, in the Total Ship Computing Envi-
ronment (TSCE) envisioned by the US Navy, the system
generates an aperiodic alert event when a series of periodic
sensor reports meet certain threat criteria. This event must
be processed on multiple processors within a hard end-to-
end deadline. User inputs and sensor readings may trigger
various other hard real-time aperiodic tasks with hard dead-
lines. A key challenge in such systems is providing hard
real-time guarantees to critical aperiodic tasks.

�
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Schedulability analysis is essential for offline certifica-
tion of the real-time properties of applications. Aperi-
odic scheduling has been studied extensively in real-time
scheduling theory. Earlier work on aperiodic servers has
also incorporated aperiodic tasks into periodic schedul-
ing frameworks [16][14][8][15][9][12][13][9][3]. More re-
cently, Abdelzaher et al. introduced new schedulability tests
based on aperiodic utilization bounds [1].

However, despite significant theoretical results on aperi-
odic scheduling, these results have not been adopted in the
standards-based distributed real-time middleware that is in-
creasingly being used for developing distributed real-time
applications. For example, current implementations of RT-
CORBA [11] do not provide any of the schedulability tests
or run-time mechanisms required by aperiodic servers. As
a result, those middleware frameworks are currently unsuit-
able for applications with hard real-time aperiodic tasks.

To address the limitations of current middleware, we are
developing support for end-to-end aperiodic scheduling in
middleware. Our work addresses practical issues of schedu-
lability analysis and scheduling mechanisms for end-to-end
aperiodic tasks in middleware.

� Practical Schedulability Analysis: We present a nu-
merical comparison of deferrable servers and aperiodic
utilization bounds, using representative workloads. We
also propose a practical method for tuning deferrable
servers for end-to-end tasks.

� Scheduling Mechanisms: We have developed and im-
plemented the first middleware-layer mechanisms for
deferrable servers, in TAO’s federated event channel.
Empirical results on a Linux testbed demonstrate the
feasibility of supporting deferrable servers in middle-
ware with a small amount of run time overhead.

In the rest of this paper, we first formulate the schedul-
ing problem and review prior theoretical results on the de-
ferrable server and the aperiodic utilization bound. We
then propose our tuning methodology and compare the two
scheduling approaches. We present the design and evalu-



ation of the deferrable server in middleware. We present
conclusions our after reviewing other related work.

2 Problem Formulation

In this section, we first describe our task model, and then
provide a formulation of the scheduling problem.

����� ���	��
���������

We consider a distributed system composed of m ape-
riodic tasks and n periodic tasks executing on � proces-
sors. Task ��� , is composed of a chain of ��� subtasks �	��� ,� �"!$#%! �	�'& , that are allocated to multiple processors. We
specify the processors on which the ��� subtasks in task �	�
execute by the visitation sequence ( ��) � ( �+*-, ( �/.0,21/131/, ( �34�5 &
of the task. The execution time for each subtask � �6� is 7 �6� .
Due to precedence constraints, subtask � �98 �;:�* cannot be re-
leased until subtask � �<8 �;:�* is completed. The first subtask� �+* of task � � is released to processor ( �<8 * at time = � and its
last subtask must complete on processor ( �<8 4-5 by = �	>@?A�
where ? � is the (end-to-end) hard deadline.

In the rest of this paper, we distinguish aperiodic tasks
from periodic tasks with superscripts B and C . For instance,� B� � �D!E�!F & refers to an aperiodic task, and � C� �G�H!EI! �J& . Each periodic task � C� is released periodically with
a period KL� . Each aperiodic task � B� is released only once.

���<� MDN0�LOP�'�RQTSU�LNVQXW��Y��Z0[Y�L\

In this paper, we focus on the problem of certifying the
real-time properties of a system offline. The goal of the
schedulability analysis is to provide schedulability guaran-
tees for a specific set of aperiodic and periodic tasks sub-
ject to their arrival patterns. In this paper, we are particu-
larly interested in scenarios when all periodic and aperiodic
tasks arrive simultaneously. For example, the certification
process may prove that a system can meet all the deadlines
when � aperiodic alerts are triggered simultaneously whileF

periodic tasks are already running in the system. Note
that, while the aperiodic tasks are assumed to be able to
arrive simultaneously, their arrival time is not assumed to
be known. Therefore, the schedulability analysis must con-
sider the worst-case arrival time of the aperiodic tasks.

3 Scheduling Strategies

We now give a brief review of two existing approaches
to aperiodic scheduling: the aperiodic utilization bound [1]
and the deferrable server [16]. Implementing bandwidth-
preserving servers without kernel-level support for CPU
reservations is challenging. We choose the deferrable server

instead of the other bandwidth-preserving servers because
it is more amenable to middleware-level implementation.
Section 6.2 gives a detailed discussion of these issues.

]���� ^`_a�bNc[Y����[YdfegZ0[���[Yhi��Z0[Y�j\lkm�jW�\U�

According to the aperiodic utilization bound (AUB) [1]
analysis, the system achieves the highest schedulable uti-
lization bound under the Deadline Monotonic Scheduling
(DMS) algorithm. Under DMS, a task has a higher priority
if it has a shorter (end-to-end) deadline. The subtasks of
a given task are synchronized by a greedy synchronization
protocol, i.e., a subtask is released as soon as its predeces-
sor finishes. Note that AUB does not distinguish aperiodic
from periodic tasks. All tasks are scheduled using the same
scheduling policy. In the AUB analysis, the set of current
tasks n �9o & at any time

o
is defined as the set of tasks that

have arrived but whose deadlines have not expired. Hence,n �9o & )qp � B�Ur =a� !so�t =u� >"?DB�wvyx p � C� r =u� !foIt =a� >z? C� v .
The synthetic utilization, {j� �<o & of processor j, is defined as|X}R~5R�0�i���9� 7 B����� ?DB� > |�}w�5b�0�i���9� 7 C��� � ? C � , which is the sum
of individual subtask utilizations on this processor accrued
over all current tasks. Under DMS, if for each task the
following condition is satisfied, then provably [1], all task
deadlines are met if the following condition holds:

4 5�
�;��*

{I� 5�� � ��� {U� 56� ��� &��� { ��56�
!��

(1)

where (b�6� is the
# �<� processor that task �	� visits.

In the special case when the set of current tasks in-
cludes one task that visits all � processors in the system,
condition (1) for that particular task dominates all condi-
tions for all tasks in n �<o & . We then only need to calculate|���;��*u� � � *�� � ��� . �*�� � �

!��
to verify the schedulability of all

tasks in n �9o & .
]��<� �g�b�;�bNVNV�	O��Y�����bN0����N

In the deferrable server (DS) [16] approach, a periodic
subtask called the deferrable server is responsible for ex-
ecuting all aperiodic subtasks on a same processor. The
deferrable server has a budget, � �� , and a period K �� . The
budget � �� is replenished at the beginning of each period.
The budget decreases whenever it is executing an aperiodic
subtask, and it is preserved when the deferrable server is
idle. The deferrable server can execute an aperiodic subtask
as long as its budget has not been exhausted. All aperiodic
subtasks are executed in Earliest Deadline First (EDF) order
based on their end-to-end deadlines. All periodic subtasks
are assigned priorities based on the DMS policy, while the
deferrable server is assigned a higher priority than any other



periodic task. The subtasks of a given periodic task are syn-
chronized by a non-greedy synchronization protocol such
as the release guard [17] . The subtasks of a given aperiodic
task are synchronized by a greedy synchronization protocol
since they do not need to enforce any inter-arrival time.

In the rest of this subsection, we first describe the
schedulability analysis for periodic tasks, followed by the
schedulability analysis for aperiodic tasks.

3.2.1 Schedulability Analysis for Periodic Tasks

We apply the time demand method to determine whether
all periodic tasks remain schedulable in the presence of de-
ferrable servers according to [10]. For a job of periodic sub-
task � ��� released at a critical instant

o��
, we add the amountFHE � p |���3��* 7 B��� , � �� �G� > ����5�� ���
	�� 	� � & v of processor time de-

manded by the deferrable server in the interval  o � , o � >�� �6��� .
Hence, the response time � �6� of subtask �	��� is given by:

������) FHE � p
��
�/��* 7 B��� , � �� �G� > � �u�6� � � ��

K �� � & v

>
��
� ��* 7 C�6� � � �6�

K � �
� � �� ! ����� ! K � & (2)

| � � ��* 7 C��� � � 56���� � represents the interference from all pe-
riodic subtasks with priority no lower than � �6� assuming
they are sorted in non-decreasing order according to their
deadlines.

Since a non-greedy synchronization protocol is used to
synchronize the release of aperiodic subtasks, the end-to-
end response time of an periodic task � � is the sum of the
response times of all its subtasks � �6� on different processors| 4 5�;��* �u�6� . If

| 4 5�;��* �u�6� ! ?A� , then periodic task � � is
schedulable.

3.2.2 Schedulability Analysis for Aperiodic Tasks

We adapt the analysis proposed in [2] to the case when all
aperiodic subtasks on processor K � arrive simultaneously.
The worst-case response time for the aperiodic tasks occurs
when they arrive at the time instant when the DS budget in
the current period has just been exhausted, so that the ini-
tial delay of aperiodic requests is given by K �� � � �� . Then,

since � � � �� )���� 5 ������� ~� �� 	� � � �� is the total budget consumed

by aperiodic subtasks whose absolute deadlines are no later
than ? �6� in � DS periods, the residual execution to be done
in the next DS period is � � ) | � � �L* 7 B� � � � � � �� . After
substituting the initial delay, the consumed DS periods and
the residual execution into the aperiodic guarantee condi-
tion in [2], we derive the following condition (3). This for-

mula can still apply to online schedulability analysis when
an aperiodic request arrives:

�
| � � �L* 7 B� �

� �� � K �� > � K �� � � �� &

> � ��
� �L* 7 B� � � �

| � � ��* 7 B� �
� �� � � �� & ! ? �6� (3)

If we assign the subdeadlines such that
| 4-5�;��* ? �6� )X? � ,

then an aperiodic task �	� will meet its deadline ? � if (3)
holds.

Since (3) is pessimistic when � �� can divide
| � � ��* 7 B� � ,

we make a small modification to (3) for this special case. If� �� can divide
| � � ��* 7 B� � , the schedulability test becomes:

� | � � �L* 7 B� �
� ��

� � & K �� > � K �� � � �� & > � �� ! ? �6� (4)

since the residual execution to be done in the last period is
exactly � � ) � �� .

Blocking Time Due to Nonpreemption: Formulas (3)
and (4) assume all aperiodic tasks are scheduled by a pre-
emptive EDF scheduling policy. However, in practice it
is difficult to implement that feature in middleware with-
out kernel-level support. Therefore, all aperiodic tasks are
scheduled by a nonpreemptive EDF scheduling policy in
our implementation. A shorter deadline aperiodic task that
becomes ready when a nonpreemptive aperiodic task with
a longer deadline is executing, is blocked until that longer
deadline task completes. Consequently, when we want to
determine whether an aperiodic task can meet all its dead-
lines, we must consider not only all the aperiodic tasks that
have shorter deadlines than it, but also the maximum exe-
cution time among all lower priority aperiodic tasks on that
processor. Let  �6� denote the longest time that aperiodic
subtask � �6� can be blocked on processor j. Then, our neces-
sary and sufficient schedulability formulas derived from (3)
and (4) for the task � ��� , including its blocking time  �6� , are
given by:

�
| � � �L* 7 B� � >  ����

� �� � K �� > � K �� � � �� &

> � ��
� ��* 7 B� � >  ��� � �

| � � ��* 7 B� � >  ��6�
� �� � � �� & ! ?A�6� (5)

and

� | � � ��* 7 B� � >  �6�
� ��

� � & K �� > � K �� � � �� & > � �� ! ? �6� (6)



4 Heuristics for Tuning Deferrable Server

The choice of budgets and periods for deferrable servers
has a significant impact on the schedulability of aperiodic
and periodic tasks. The primary goal of the tuning pro-
cess is to meet the deadlines of all aperiodic tasks. Sub-
ject to the schedulability of aperiodic tasks, it should also
minimize the utilization of the deferrable server in order to
improve the schedulability of periodic tasks. Clearly, ex-
haustive search of all possible configurations is impractical
due to its exponential time complexity. In this section, we
therefore propose a set of efficient heuristics for tuning de-
ferrable servers.

�U��� � �L�bN0�U[Y��� ��� Z��U�@�zWI\�[�\��q���bZ��I���

Our method for tuning deferrable servers works as fol-
lows. (1) We first assign a subdeadline to each aperiodic
subtask. The sum of the subdeadlines of all the subtasks of
a task equals its end-to-end deadline. We give two simple
subdeadline assignment policies in Section 4.2. (2) We then
select a budget for each deferrable server based on the ex-
ecution times of aperiodic subtasks on the same processor.
We propose heuristics for selecting budgets in Section 4.3.
(3) Given the subdeadlines of aperiodic subtasks and the
budgets of deferrable servers, we then compute the maxi-
mum period for each deferrable server that can guarantee
the aperiodic subdeadlines on the same processor based on
the schedulability analysis described in Section 3.2.2.

Note that the method above guarantees the subdead-
lines of all aperiodic subtasks, because the periods of de-
ferrable servers are computed based on the schedulable con-
dition for aperiodic subtasks, and therefore the deadlines of
all tasks are guaranteed. After the parameters of the de-
ferrable servers have been decided, the final step is testing
the schedulability of all periodic tasks in the presence of de-
ferrable servers with the selected budgets and periods using
formula (2).

�U�<� ��WIO �I���	�P��[Y\I��^ �-��[��j\IQ���\LZ

We use two simple but efficient algorithms to assign sub-
deadlines for each aperiodic subtask. Similar heuristics
have been used in subdeadline assignment for periodic
tasks [7].

Even Deadline (ED): Evenly divide the deadline among
all subtasks, so the basic rule is ?%�6�z)
	 54 5 . Since all aperi-
odic tasks are scheduled by a nonpreemptive EDF schedul-
ing policy in our implementation, according to formula (5),
the subdeadline of � B��� should be longer than the total exe-
cution time of aperiodic subtasks on that processor whose
priorities are no lower than � B�6� plus the possible blocking

time  ��6� of � B�6� . This slight change may make � B�6� , which
can not be scheduled under the basic rule, schedulable:

? �6� )
� 	 54 5 if 	 54 5� | � � �L* 7 B��� >  �6�| � � �L* 7"B��� >  ��6� otherwise

Proportional Deadline (PD): Make the subdeadline pro-
portional to the execution time. We make the same change

as in ED for the basic rule ? �6� ) ? � � ~56�
��� 5����� �

~5 � by adding

another case to it as well:

? ��� )
� ? � � ~5��

��� 5� ��� �
~5 � if 	 5 � ~56�

��� 5����� � 5 � �
| � � �L* 7 B��� >  ��6�| � � ��* 7 B�6� >  ��6� otherwise

�U�9] k WU�����bZg�����Y��dwZ0[Y�j\

To benefit the schedulability of periodic tasks while
guaranteeing the schedulability of all aperiodic tasks in the
system, we try to find the proper budget and period which
make the DS task’s utilization on each processor reach its
lower bound. We give � �� � K �� as the utilization of the DS
on processor

#
.

THEOREM 3.3. The utilization of the DS reaches its
lower bound

F���� p ��| � � �L* 7 B� � >  ���� & � ? �6� v on processor#
when DS budget � �� can divide

| � � ��* 7"B� � >  ��� for any i� �"! EU!fF & .
Proof As Described. From Section 3, when

| � � �L* 7 B� � > ��6� is not divisible by the DS budget � �� , the necessary and
sufficient schedulability condition is inequality (5). The for-
mula can be rewritten as:

�
| � � ��* 7 B� � >  ��6�

� �� � > �"! ? ��� �$| � � ��* 7 B� � �  ���
K �� � � �� (7)

noting that:

�
| � � �L* 7 B� � >  ���

� �� � > ��� | � � ��* 7 B� � >  ��6�
� ��

Substituting the above inequality’s left part with its right
part into inequality (7) we obtain:

� �� � K �� � � ��
� �L* 7 B� � >  ��� & � ?A�6� (8)

When
| � � ��* 7 B� � >  ��� is divisible by the DS budget � �� ,

the necessary and sufficient schedulability condition is in-
equality (6). the formula can be rewritten as:



| � � ��* 7 B� � >  ��6�
� �� K �� ! ? ���

Thus, the DS’s utilization is:

� �� � K �� � � ��
� ��* 7 B� � >  ��� & � ? ��� (9)

From (8) and (9), the minimum DS utilization on proces-
sor

#
is

F ��� p � | � � ��* 7 B� � >  ��� & � ? ��� v when
| � � ��* 7 B� � >  ���

is divisible by � �� , for any i (
� ! E ! F

). This bound is

tight. When
| � � ��* 7 B� � >  �6� , for any i (

�`! E ! F
), is

divisible by � �� , we can choose a proper K �� to achieve this
lower bound. When not divisible, the DS utilization is al-
ways higher than the bound.

Due to the above proof, the DS budget should be a com-
mon divisor (CD) of

| � � ��* 7 B� � >  ��� for each aperiodic
subtask � �6� (

� ! EH! F
) on processor K � . This will re-

duce the required utilization of the Deferrable Server task,
and thus enhance the schedulability of periodic tasks on that
processor. Although we decide to pick the common divisor
as the DS budget, there is still another question of how to
choose from multiple common divisors. If a larger common
divisor is picked, it will extend the interference introduced
by the DS when lower priority periodic tasks are released
with aperiodic tasks at the beginning of the DS period. The
response times of periodic tasks thus may be increased by
this longer interference on that processor. This negative im-
pact finally may affect the schedulability of periodic tasks
with shorter deadlines. If we pick a smaller common di-
visor, it will give us better schedulability analysis results,
but may increase the run-time overhead. We compare the
schedulable capabilities of these two choices in Section 5.

Although in theory
�

is always the minimum common
divisor in whatever unit of time is being considered, a sys-
tem may be able to measure time at a much finer granular-
ity (for example in nanoseconds on a GHz processor) than
it can efficiently schedule operations. It is therefore most
appropriate to consider the smallest common divisor rela-
tive to a minimum enforcable scheduling interval, which we
call the smallest relative common divisor. For middleware
scheduling [5], 10 ms (capable of scheduling periodic tasks
at rates up to 100 Hz) is a reasonable and efficiently enfor-
cable minimum interval. The worst case occurs when we
can not find a smallest relative common divisor for the set| � � ��* 7 B� � >  ��� for any i (

�"!sEU!fF
). If this happens, we

round up each
| � � ��* 7 B� � >  ��� in the set to the next highest

multiple of 10 ms, so that the smallest relative common di-
visor is always 10 ms, which is also the smallest acceptable
DS budget in our system.

5 Numerical Comparison

We now compare different end-to-end scheduling strate-
gies for aperiodic and periodic tasks through numerical
analysis. The system settings used in our analysis are close
to those for a representative application defined in DARPA’s
Adaptive and Reflective Middleware Systems (ARMS) pro-
gram.

The system has 4 processors and 12 tasks including 4
aperiodic tasks and 8 periodic tasks. The number of sub-
tasks per task is uniformly distributed between 1 and 4.
Subtasks are randomly assigned to processors as long as any
two subtasks in a same task are not assigned to the same pro-
cessor. The periods of periodic tasks are randomly chosen
between 250 ms and 10sec.

All processors have the same synthetic utilization if all
subtasks are released simultaneously. We vary the synthetic
utilization per processor in different runs to evaluate the im-
pact of system load on the schedulability analyses. 100
different task sets were randomly generated for each syn-
thetic utilization. As is described in Section 3, we consider
the worst-case scenario in which all aperiodic and periodic
tasks are released simultaneously.

In the previous section we proposed two heuristics for
selecting budgets for deferrable servers: the smallest rel-
ative common divisor (SRCD) and the greatest common
divisor (GCD). We also have two subdeadline assignment
heuristics: Proportional Deadlines (PD) and Even Dead-
lines (ED). The combinations of the heuristics produce 4
different DS configurations referred to as DS+ED+SRCD,
DS+ED+GCD, DS+PD+SRCD and DS+PD+GCD. We
compare our heuristics with exhaustive search (ES) which
tries to search all combinations of possible subdeadline as-
signments and budget selections. Since the time complex-
ity of exhaustive search is exponential, we only consider
6 possible values for each subdeadline and budget. The
range for each budget of a deferrable server is from 10 ms
to 25 ms. The subdeadline range of one subtask is from
its execution time to its longest allowed subdeadline. For
example, if Task �	� has 4 subtasks, assume the subdead-
lines of the first 2 subtasks have been decided. Then the
longest allowed subdeadline for the third subtask is equal
to ?A� � | .�;��* ?A�6� � 7 � � . The schedulability analysis with
DS+ES still takes several hours to run even when we limit
it to this 6-way search.

We plot the fraction of task sets that are schedula-
ble under different analyses in Figure 1. We first com-
pare the results under different variations of the DS ap-
proach. As expected based on the earlier discussion, SRCD
achieves higher schedulability than GCD, while the sub-
deadline assignment heuristics do not have a significant ef-
fect on schedulability. Furthermore, SRCD performs close
to ES, indicating our efficient heuristics for tuning de-



ferrable servers can be highly effective in practice.

Our results also show that the AUB analysis is more pes-
simistic than the DS analysis when they are both performed
offline. However, earlier results demonstrated that the AUB
approach may significantly reduce its pessimism when it is
applied online because it can reset the synthetic utilization
to zero whenever the processor becomes idle. Therefore our
results may only hold in the offline case which is the focus
of this study.

To be more general, we increase the number of the pro-
cessors in the system to 8. At the same time, the number
of subtasks per task is uniformly distributed between 1 and
8. Keeping other parameters the same, we randomly gener-
ate same number of task sets and do schedulability analy-
sis for each of them. Since the running time of exhaustive
search increases exponentially, when we increase the num-
ber of processors and the maximum number of subtasks per

task, we only compare our heuristics with AUB as is shown
in Figure 2. Although increasing the number of subtasks
and processors decreases the schedulable task sets for both
approaches, our heuristics still show better schedulability
results than AUB when performed offline.

6 Deferrable Server in Middleware

To support aperiodic tasks on middleware, we have inte-
grated deferrable servers with the event service of The ACE
ORB (TAO) [6]. In this section, we first give an overview of
TAO’s federated event channel [6], and then present the de-
sign and implementation of deferrable server mechanisms
in that event channel.
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Figure 1. Schedulability Comparison for 4 processors with Nonpreemptive EDF
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Figure 2. Schedulability Comparison for 8 processors with Nonpreemptive EDF
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Each processor has its own event channel (EC), and the
ECs exchange events via a Gateway, as described in [6].
The Gateway can reside in either processor, but for our im-
plementation it is on the supplier side. Each subtask is im-
plemented as a supplier-consumer pair. The supplier pushes
events which trigger subtask execution in a single consumer.

For example, consider a periodic task � C* as described
in Section 3, which has 3 subtasks executing on 3 different
processors in sequence. The structure of timers, suppliers,
and consumers on processors

E
,
#
, and � is shown in Fig-

ure 3. In processor
E
, a Supplier1 1 with a timer (depicted

as a clock) pushes events (arrows) through a local EC to a
Consumer1 1, which then executes subtask � C* 8 * and pushes
another event to trigger execution on processor

#
through

another Supplier1 2, local EC, Gateway and remote EC.
Processor

#
’s Consumer1 2 executes subtask � C*�8 . and then

pushes yet a third event to trigger execution on processor � ,
whose Consumer1 3 executes the final subtask, � C* 8 � . This
sequence of events happens periodically for a periodic task,
every time the timer determines that it is time for � C* to re-
lease a job. For an aperiodic task � B* which also has 3 sub-
tasks executing on processors

E
,
#

and � , its sequence of
events is the same as the periodic task, except that its se-
quence of events happens only once.

EC

Supplier1_1

Gateway

Consumer1_1

EC

Consumer1_2

Consumer1_3

Supplier1_2

Supplier1_3

Gateway

Processor i

Processor jProcessor k

Figure 3. Federated Event Channel Structure

The Kokyu Dispatching framework [5] is used in our
system to provide real-time dispatching of events. Release
Guard was implemented in [18] for ECs in TAO as a slight
modification of the Kokyu Dispatching Framework. We
configure Kokyu to use the preemptive DMS scheduling
algorithm. Each periodic event is assigned to a specific
dispatching queue according to its period. Each dispatch-
ing queue has an operating system thread whose priority is
decided by the queue priority. Each dispatching thread re-
moves the event from the head of its queue and runs its entry

point function until it completes or is preempted by a higher
priority dispatching thread.

���<� �g�b�;�bNVNV�	O��Y�����bN0����N��-Q _P�Y��Q��R\LZ���Z0[Y�j\

The original Kokyu dispatching framework [5] does
not support any bandwidth-preserving servers for aperiodic
events. As we noted in Section 3, it is challenging to imple-
ment bandwidth preserving servers such as the deferrable
server on top of standard operating systems (e.g., Linux)
that do not support CPU reservation.

We overcome this challenge by developing a novel de-
ferrable server mechanism in TAO. Our deferrable server is
implemented by a pair of threads: a deferrable server thread
that processes aperiodic events and a budget manager thread
that manages the budget and the execution of the deferrable
server thread. The deferrable server thread, which is as-
signed the second highest operating-system thread priority,
services all aperiodic tasks. If an aperiodic event arrives
and the deferrable server thread does not use up its bud-
get in the current period, the aperiodic task will be able to
preempt any other running periodic task. The budget man-
ager thread runs at the highest operating system priority to
manipulate the consumption and replenishment of the DS’s
budget. Its highest priority allows it to interrupt the DS
thread when it uses up its budget in the current period. The
two threads share two variables, left-exec and left-budget.
left-exec keeps track of the remaining execution time for
the currently running aperiodic task, and left-budget keeps
track of the remaining budget in the current period.

ACE Timer Queue

Kokyu Dispatching Queue

Budget
Manager
Thread

DS Thread

Aperiodic Events

Replenish Timers

Budget
Exhausted Timer

Figure 4. Middleware DS Mechanisms

As we show in Figure 4, the deferrable server thread dis-
patches all aperiodic events. Before dispatching an event,
if it finds there is not enough budget left for the aperiodic
event to complete in the current period, it will insert a
budget exhausted timer into a timer queue. The budget ex-
hausted timer will fire when the remaining budget has been
used up, and generate a budget exhausted event. This budget
exhausted event is handled by the budget manager thread
which runs at the highest priority. When this event hap-
pens, the budget manager thread will send a suspend signal



to the deferrable server thread.
The budget manager thread also handles a timer-driven

event called replenish, which occurs at the beginning of
each DS period. When this event happens, the budget man-
ager thread will replenish the DS budget and will also send
a resume signal to the DS thread if it had been suspended
previously. It may set a new budget exhausted timer which
will fire when the replenished budget has been used up, if
it finds the remaining execution time of the current running
aperiodic task is longer than the replenished budget.

We summarize the operations involved in our deferrable
server mechanism as follows:

Budget manager: On a periodic replenish event, (1) reset
left-budget and update left-exec, (2) resume the deferrable
server thread if it is suspended, and (3) insert a budget ex-
hausted timer into the timer queue if left-exec is larger than
the replenished budget. On a budget exhausted event, sim-
ply (1) suspend the deferrable server thread.

DS thread: before dispatching an aperiodic task, (1) up-
date left-budget and left-exec, and (2) insert a budget ex-
hausted timer into the timer queue if left-budget is less than
the task’s execution time.

We note that our budget management mechanism will
function properly only if the DS thread runs at a higher pri-
ority than the other dispatching threads, and can only be
interrupted by the budget manager thread.

7 Empirical Evaluation
� ��� ����_ ��Nc[YQ��R\LZ��J�"MD�Y��Z0�G�LNVQ��

The experiments described in this section were per-
formed using ACE/TAO version 5.1.4/1.1.4 on a testbed
consisting of four machines. Two of them are Pentium-
IV 2.5GHz machines, and the other two are Pentium-IV
2.8GHz machines. Each of them has 500MB RAM and
512KB cache, and runs version 2.4.22 of the KURT-Linux
operating system [4]. These platforms provide a CPU-
supported timestamp counter with nanosecond resolution.

The data stream user interface (DSUI) and data stream
kernel interface (DSKI) are provided with the KURT-Linux
distribution. The DSUI is used to record information from
the middleware and application layers, while the DSKI is
used to collect information at the kernel level like context
switching. By using both DSUI and DSKI instrumentation,
we can obtain a precise accounting of task start and stop
times, thread context switches, CPU idle intervals, and other
relevant events across multiple system levels.

� �<� ��d �U���PWI�Y�	OP[��Y['Z���� ���Y[Y����Z0[Y�j\
For CPU utilizations 0.4 and 0.5, we randomly picked 20

task sets. Half of them are schedulable in DS+ED+SRCD

with nonpreemptive EDF, and half are not. We ran each
task set for 10 minutes and checked how many task sets
had deadline misses in our DS implementation. We did the
same thing for CPU utilizations 0.6, 0.7, 0.8 and 0.9. For
CPU utilization 0.6, only DS+ED+SRCD and ES could find
a schedulable task set out of 100 randomly generated task
sets, and we also randomly picked 10 unschedulable sets
at that CPU utilization. We only randomly picked 10 un-
schedulable sets for each of utilizations 0.7, 0.8 and 0.9,
since at those CPU utilizations, none of the analyses can
find any schedulable task sets among our 100 randomly gen-
erated task sets.

Our results show that no schedulable task sets had dead-
line misses in a run of 10 minutes. Some of the analytically
unschedulable task sets also met all deadlines in our exper-
iments. This is because the worst-case arrival pattern (often
referred to as the critical instant) assumed by the analysis
did not occur in our experiments. We note that it is impos-
sible to synchronize the release times of all subtasks on all
processors due to the dependencies among the subtasks.

To measure the pessimism of the analysis, we also plot
the fraction of the analytically unschedulable task sets that
also missed deadlines in our experiments in Figure 5. The
fraction of task sets with missed deadlines increased with
increasing utilization, indicating that the analysis is less
pessimistic under heavy load.

Moreover, for some CPU utilizations, DMS can sat-
isfy all deadlines of the task set in which DS has deadline
misses. This result indicates that, for our workload, DMS
can meet more deadlines than DS in practice even though
the AUB analysis is more pessimistic than the Deferrable
Server analysis.
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To measure the run-time overhead incurred by deferrable
servers, we first randomly generated one task set when
the CPU utilization was 0.5, then used the DS+ED+SRCD
strategy to calculate the DS’s budget and period. After
running the task set for 5 minutes, we collected the data
recorded by DSUI and DSKI, and then calculated the over-
head.

BM: replenish (1) reset (2) resume DS (3) set timer
10.010 � s 5.606 � s 9.775 � s

BM: budget (1) suspend DS
exhausted 7.003 � s
DS thread (1) update (2) set timer

15.729 � s 30.186 � s

Table 1. Deferrable Server Overhead Analysis

In each period of the deferrable server, the budget man-
ager thread is released at most twice. It is released in the
beginning of each period to handle the replenish event, and
it may be released again to suspend the execution of the
deferrable server thread when the budget exhausted event
happens. Since not all jobs are necessary for each release,
we measure the execution time of each step and average the
results from a 5 minute run, shown in Table 1.

The maximum overhead for each operation is the sum
of the overheads of all its steps. These overheads are small
when compared with the execution time of tasks in our sys-
tem. Since in each DS period, the replenish operation runs
once and the exhausted operation runs at most once, the
maximum budget manager overhead per DS period is the
sum of the maximum overheads of its replenish and budget
exhausted operations. Our measurements showed this was
as high as 32.394 � s. Moreover, some steps may not be in-
voked for some releases. For example, in most cases, steps
2 and 3 of the replenish operation are not invoked because
their conditions are not satisfied. Step 2 runs only if the DS
thread has been suspended because of the budget exhausted
event. Step 3 runs only if the remaining execution time of
the current running aperiodic task is longer than the replen-
ished budget. So their conditions can only be satisfied when
aperiodic tasks are running. Since each aperiodic task only
releases once, the proportional overhead, when an aperiodic
task is running, is small over a run of 5 minutes. We also
measure the average overhead of the replenish operation by
averaging total overhead over the total number of releases
in 5 minutes. For the replenish operation, its average over-
head for each release is about 7.896 � s, which is close to
the average overhead of its first step.

The overhead for the DS thread’s task dispatching op-

eration, since it only happens when we release an aperi-
odic task and our workload only has 4 aperiodic tasks, is
at most 4 times the sum of the overheads of its steps 1 and
2, per processor. Our measurements showed that this was
as high as 183.66 � s. All of these results demonstrate that
deferrable servers can be supported at the middleware layer
with acceptable run-time overhead.

In addition, we found that step 3 of the replenish oper-
ation and step 2 of the DS thread operation, both of which
insert a budget exhausted timer into the Timer Queue, have
very different overheads. Looking at the detailed timeline
data collected by DSUI and DSKI, we found several context
switches between the DS thread and the Budget Manager
thread when the DS thread inserts a timer into the timer
queue, which do not occur when the replenish operation
similarly inserts a timer. The DS budget manager thread
is always waiting on a reactor timer, and will be sitting in
a select system call when the DS thread makes a call to
set a new timer. If the new timer is shorter than the existing
one, the select call must be triggered to return early via the
reactor’s notification pipe, so that the new earlier wait time
can be used instead of the old later time. The budget man-
ager thread is thus being woken up and run briefly when the
DS thread tries to insert a timer into that Timer Queue, to
change to the new earlier time and to use that value in a new
call to select, on behalf of the DS thread.

8 Other Related Work

In addition to the Aperiodic Utilization Bound (AUB) [1]
and the Deferrable Server (DS) [16] algorithms we consid-
ered in this paper, there are many other scheduling algo-
rithms that deal with aperiodic and periodic hybrid task sets.
The simplest method to handle a set of soft aperiodic tasks
in the presence of periodic tasks is to schedule them in the
background. Since aperiodic tasks’ execution can be inter-
rupted by any periodic task while in background process-
ing, hard deadlines of aperiodic tasks in our system may not
be satisfied. Another scheduling algorithm which is similar
to Deferrable Server is Polling Server (PS) [14]. The ma-
jor difference between DS and PS is that the PS does not
preserve its budget. If no aperiodic tasks are pending, PS
suspends itself until the beginning of its next period and
its higher priority budget in this period is wasted. Neither
background processing nor PS is suitable for aperiodic tasks
with hard deadlines as they may suffer from long response
times.

Two other algorithms which are both bandwidth-
preserving servers like DS are Priority Exchange (PE) [8]
and the Sporadic Server (SS) [15]. Unlike DS, PE preserves
its high priority budget by exchanging it for the execution
time of a lower priority periodic task. So the PE algorithm
has a slightly longer aperiodic response time while bene-



fiting the schedulability of periodic tasks. Moreover, PE
requires extra run-time overhead to manage and track prior-
ity exchanges when compared with DS. SS only replenishes
its capacity after it has been consumed by aperiodic tasks.
Compared with DS and PS, the Sporadic Server enhances
the average response time of aperiodic tasks while not af-
fecting the schedulability of periodic tasks. With respect to
DS, the budget and period of SS are not fixed. SS needs
to calculate its replenishment time and amount frequently,
which costs more run-time overhead.

Another well-known algorithm that supports hybrid pe-
riodic and aperiodic task set scheduling is Slack Steal-
ing [9][12][13]. Slack Stealing tries to steal any slack from
the periodic tasks and uses it to execute aperiodic tasks as
soon as possible. So Slack Stealing has the shortest aver-
age aperiodic task response time over DS, PE and SS. Slack
Stealing has a static version [9] and a dynamic version [3],
depending on whether or not the slack is dynamic. Both
versions are hard to implement in a real system, because of
their space and time complexity.

9 Conclusions

In summary, this work represents a promising step to-
ward developing integrated end-to-end scheduling services
for aperiodic and periodic tasks in distributed real-time mid-
dleware. We found that the aperiodic utilization bound anal-
ysis is more conservative than the deferrable server analy-
sis when they are used offline. Second, we proposed effi-
cient heuristics for tuning deferrable servers for end-to-end
tasks. Numerical results demonstrate that our heuristics are
competitive against exhaustive search. Moreover, we have
designed and implemented a novel deferrable server mech-
anism and integrated it with TAO’s federated event chan-
nel. Our deferrable server mechanism is highly efficient,
incurring less than 15 � s of average run-time overhead per
period on a Linux testbed. In the future, we plan to inte-
grate end-to-end scheduling services with online admission
control and task (re)allocation in dynamic environments.

References

[1] T. F. Abdelzaher, G. Thaker, and P. Lardieri. A Feasible
Region for Meeting Aperiodic End-to-end Deadlines in Re-
source Pipelines. In International Conference on Distributed
Computing Systems ICDCS 2004, Tokyo, Japan, Mar. 2004.

[2] G. C. Buttazzo. Hard Real-Time Computing Systems.
Kluwer Academic Publishers, Norwell, Massachusetts,
1997.

[3] R. I. Davis, K. Tindell, and A. Burns. Scheduling slack time
in fixed priority preemptive systems. In IEEE Real-Time
Systems Symposium, pages 222–231. IEEE, 1993.

[4] Douglas Niehaus, et al.. Kansas University Real-Time
(KURT) Linux. www.ittc.ukans.edu/kurt/, 2004.

[5] C. Gill, D. C. Schmidt, and R. Cytron. Multi-Paradigm
Scheduling for Distributed Real-Time Embedded Comput-
ing. IEEE Proceedings, Special Issue on Modeling and De-
sign of Embedded Software, 91(1), Jan. 2003.

[6] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The design
and performance of a real-time CORBA event service. In
Proceedings of OOPSLA ’97, Atlanta, GA, pages 184–200,
1997.

[7] B. Kao and H. Garcia-Molina. Deadline assignment in dis-
tributed soft real-time systems. In Proceedings of the 13th
International Conference on Distributed Computing Sys-
tems, pages 428–437. IEEE, 1993.

[8] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced ape-
riodic responsiveness in a hard real-time environment. In
IEEE Real-Time Systems Symposium, pages 261–270. IEEE,
1987.

[9] J. P. Lehoczky and S. R. Thuel. An optimal algorithm for
scheduling soft-aperiodic tasks in fixed-priority preemptive
systems. In The 13th IEEE Real-Time Systems Symposium
(RTSS ’92), pages 110–123, Phoenix AZ, 1992.

[10] J. W. S. Liu. Real-Time Systems. Prentice Hall, New Jersey,
2000.

[11] Object Management Group. Real-Time CORBA Specifica-
tion, 1.1 edition, Aug. 2002.

[12] S. Ramos-Thuel and J. P. Lehoczky. On-line scheduling of
hard deadline aperiodic tasks in fixed-prioriry systems. In
IEEE Real-Time Systems Symposium, pages 160–171. IEEE,
1993.

[13] S. Ramos-Thuel and J. P. Lehoczky. Algorithms for schedul-
ing hard aperiodic tasks in fixed priority systems using slack
stealing. In IEEE Real-Time Systems Symposium, pages 22–
35. IEEE, 1994.

[14] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some
practical problems in prioritizing preemptive scheduling. In
IEEE Real-Time Systems Symposium, pages 181–191. IEEE,
1986.

[15] B. Sprunt, L. Sha, and L. Lehoczky. Aperiodic task schedul-
ing for hard real-time systems. The Journal of Real-Time
Systems, 1(1):27–60, 1989.

[16] J. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable
server algorithm for enhanced aperiodic responsiveness in
real-time environments. IEEE Transactions on Computers,
44(1):73–91, 1995.

[17] J. Sun. Fixed priority scheduling of end-to-end periodic
tasks. PhD thesis, Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, 1997.

[18] Yuanfang Zhang, Bryan Thrall, Stephen Torri, Christopher
Gill and Chenyang Lu. A Real-Time Performance Compar-
ison of Distributable Threads and Event Channels. In Pro-
ceedings of the 11th Real-time Technology and Application
Symposium (RTAS ’05), San Francisco, Mar. 2005. IEEE.


	End-to-End Scheduling Strategies for Aperiodic Tasks in Middleware
	Recommended Citation
	End-to-End Scheduling Strategies for Aperiodic Tasks in Middleware

	tmp.1469562486.pdf.OwNbf

