
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2008-10

2008-01-01

Real-Time Performance and Middleware on Multicore Linux Real-Time Performance and Middleware on Multicore Linux

Platforms Platforms

Yuanfang Zhang, Christopher Gill, and Chenyang Lu

An increasing number of distributed real-time applications are running on multicore platforms.

However, existing real-time middleware (e.g., Real-Time CORBA) lacks support for scheduling

soft real-time tasks on multicore platforms while guaranteeing their time constraints will be

satisfied. This paper makes three contributions to the state of the art in real-time system

software for multicore platforms. First, it offers what is to our knowledge the first experimental

analysis of real-time performance for vanilla Linux primitives on multicore platforms. Second, it

presents MC-ORB, the first real-time object request broker (ORB), designed to exploit the

features of multicore platforms, with admission control... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhang, Yuanfang; Gill, Christopher; and Lu, Chenyang, "Real-Time Performance and Middleware on
Multicore Linux Platforms" Report Number: WUCSE-2008-10 (2008). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/221

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233233512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/221?utm_source=openscholarship.wustl.edu%2Fcse_research%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/221

Real-Time Performance and Middleware on Multicore Linux Platforms Real-Time Performance and Middleware on Multicore Linux Platforms

Yuanfang Zhang, Christopher Gill, and Chenyang Lu

Complete Abstract: Complete Abstract:

An increasing number of distributed real-time applications are running on multicore platforms. However,
existing real-time middleware (e.g., Real-Time CORBA) lacks support for scheduling soft real-time tasks
on multicore platforms while guaranteeing their time constraints will be satisfied. This paper makes three
contributions to the state of the art in real-time system software for multicore platforms. First, it offers
what is to our knowledge the first experimental analysis of real-time performance for vanilla Linux
primitives on multicore platforms. Second, it presents MC-ORB, the first real-time object request broker
(ORB), designed to exploit the features of multicore platforms, with admission control and task allocation
services that can provide schedulability guarantees for soft real-time tasks on multicore platforms. Third,
it gives a performance evaluation of MC-ORB on a Linux multicore testbed, the results of which
demonstrate the efficiency and effectiveness of MC-ORB.

https://openscholarship.wustl.edu/cse_research/221?utm_source=openscholarship.wustl.edu%2Fcse_research%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/221?utm_source=openscholarship.wustl.edu%2Fcse_research%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages

Real-Time Performance and Middleware on Multicore Linux Platforms ∗

Yuanfang Zhang, Christopher Gill and Chenyang Lu
Department of Computer Science and Engineering

Washington University, St. Louis, MO, USA
{yfzhang, cdgill, lu}@cse.wustl.edu

Abstract

An increasing number of distributed real-time applica-
tions are running on multicore platforms. However, existing
real-time middleware (e.g., Real-Time CORBA) lacks sup-
port for scheduling soft real-time tasks on multicore plat-
forms while guaranteeing their time constraints will be sat-
isfied. This paper makes three contributions to the state
of the art in real-time system software for multicore plat-
forms. First, it offers what is to our knowledge the first
experimental analysis of real-time performance for vanilla
Linux primitives on multicore platforms. Second, it presents
MC-ORB, the first real-time object request broker (ORB),
designed to exploit the features of multicore platforms, with
admission control and task allocation services that can pro-
vide schedulability guarantees for soft real-time tasks on
multicore platforms. Third, it gives a performance evalua-
tion of MC-ORB on a Linux multicore testbed, the results of
which demonstrate the efficiency and effectiveness of MC-
ORB.

1 Introduction

As evidenced by recent products from major CPU ven-
dors, multicore processors (which include several cores on
a single chip) are poised to dominate the real-time and em-
bedded systems space. Dual-core chips are popular in to-
day’s market, and many CPU vendors have released de-
signs with more than two cores. Applications that pro-
cess large numbers of transactions with soft real-time con-
straints are likely deployed on multicore platforms even to-
day. However, standard operating systems such as Linux
can not effectively schedule soft real-time workloads on
such platforms. Moreover, the real-time performance of
Linux primitives on multi-core platform has not been sys-
tematically evaluated. Benchmarking the real-time perfor-
mance of Linux primitives is essential for developing pre-

∗This work was supported in part by NSF grant CCF-0615341 and NSF
CAREER award CNS-0448554.

dictable real-time applications on multicore platforms.
While traditional real-time middleware such as Real-

Time CORBA [10] ORBs have shown promise for dis-
tributed systems with soft real-time constraints, existing
middleware lacks support for guaranteeing such constraints
on multicore platforms. For example, existing admission
control (AC) and task allocation (TA) services do not con-
sider thread CPU affinity and migration issues that arise
with a multicore architecture. Hosts are the minimum gran-
ularity for task assignment in existing middleware. How-
ever, on a multicore platform once a task is assigned to
a host, it could be executed on any core or even migrated
among cores in that host, which is not controlled by exist-
ing middleware. Any AC based on such an imprecise as-
signment necessarily loses its reliability. To support soft
real-time tasks on multicore platforms, real-time middle-
ware should therefore be able to provide AC and TA ser-
vices not only among separate hosts, but also among cores
within each host.
Research contributions. To address the limitations of
current generation real-time middleware in supporting soft
real-time tasks on multicore platforms, we have: (1) pro-
vided an experimental analysis of the real-time performance
for vanilla Linux on multicore platforms, the results of
which are valuable for both real-time middleware devel-
opers and real-time application developers alike; (2) devel-
oped what is to our knowledge the first real-time ORB for
multicore platforms (MC-ORB), with AC and TA services
that enforce real-time task constraints on multicore plat-
forms; and (3) performed an empirical evaluation of MC-
ORB, the results of which demonstrate the efficiency and
effectiveness of our middleware on multicore platforms.

Section 2 introduces background information on the
Linux kernel and real-time ORBs, and describes related
work. Section 3 presents an experimental analysis of the
real-time performance of vanilla Linux on multicore plat-
forms. Section 4 presents the design of MC-ORB, the
first real-time ORB specifically intended for multicore plat-
forms. Section 5 evaluates the performance of MC-ORB
and characterizes the overheads it introduces. Finally, we

offer concluding remarks in Section 6.

2 Background and Related Work

Linux kernel. Kernel support for symmetric multi-
processors (SMP) was introduced in Linux 2.0, but it wasn’t
until the 2.6 kernel that the power of SMP was fully real-
ized. The pre-2.6 scheduler used a single runqueue for all
processors in a SMP system. This meant that a task could
be scheduled on any processor, which can be good for load
balancing but could disrupt memory caches. The pre-2.6
scheduler also used a single runqueue lock, so that in an
SMP system even the selection of which task to execute
locked out any other processors from manipulating the run-
queues, resulting in idle processors awaiting release of the
runqueue lock and accordingly decreasing efficiency.

The 2.6 kernel [1, 2] introduced a new O(1) scheduler
that included better support for SMP systems. Since the
2.6 kernel maintains a runqueue for each CPU, the number
of running threads on each of the CPUs in the system can
be balanced. At regular intervals, the kernel tries to redis-
tribute threads to maintain a balance in the number of run-
ning threads per processor, across the processor complex.
In addition, with a runqueue per processor, a thread gen-
erally shares affinity with a CPU and can better utilize the
CPU’s hot cache.

The better support for multiprocessor architectures in
Linux 2.6 moves it closer to being an efficient soft real-
time operating system on those platforms. However, Linux
still can not fulfill important real-time requirements, such
as guaranteeing system schedulability. This paper therefore
focuses on characterizing the timing of Linux features on
multicore platforms, and then on providing necessary AC
and TA services in middleware for real-time systems.
Linux deficiencies. Calandrino et al. [4] offer reasons why
current Linux support is inadequate for soft real-time peri-
odic tasks. One deficiency is that Linux has no mechanisms
to ensure that real-time deadlines are met. They added an
AC mechanism in the Linux kernel to perform schedulabil-
ity analysis for arriving soft real-time periodic tasks. An-
other deficiency is that Linux itself may migrate real-time
tasks, which can cause deadline misses since tasks are no
longer on the cores where their utilization was guaranteed
by AC. To prevent real-time task migration, they modified
the processor affinities of real-time tasks so that each thread
may only run on a specific core. Instead of changing the
Linux kernel to correct these deficiencies, we address them
in middleware, i.e., in our new real-time ORB (MC-ORB),
which is a more flexible approach since it does not depend
on modifying the kernel and can be easily adapted to other
operating systems.
Real-time ORBs. The OMG’s Real-Time CORBA specifi-
cation [10] provides standard policies and mechanisms that

support quality-of-service requirements end to end, which
enhances the effectiveness of distributed object computing
middleware for performance-sensitive systems. ORBs send
requests between clients and servers transparently. A real-
time ORB end-system provides standard interfaces so that
applications can specify their resource requirements. The
policy framework defined by the CORBA Messaging spec-
ification lets applications configure ORB end-system re-
sources, such as thread priorities, buffers for message queu-
ing, transport-level connections, and network signaling, to
control ORB behavior. TAO [6] is a real-time CORBA
ORB that is compliant with the Real-time CORBA specifi-
cation [10]. nORB [13] is a light weight real-time ORB for
memory-constrained networked embedded systems. nORB
is developed and maintained at Washington University and
achieves comparable real-time performance to TAO, while
reducing footprint significantly. We developed our MC-
ORB implementation, and its AC and TA middleware ser-
vices for multicore platforms by extending nORB.

Middleware services. In previous work we developed
the first instantiation of a middleware AC service [16]
supporting both aperiodic and periodic tasks, on top of
TAO [6], and the first configurable component middleware
services [15] for AC and load balancing of aperiodic and pe-
riodic tasks on top of CIAO [5]. However, all our previous
middleware services were designed for uniprocessor plat-
forms, and do not consider the nuances of multicore plat-
forms.

3 Experimental Study of Linux on Multicore
Platforms

In this section, we describe experiments we conducted
to evaluate the real-time performance of vanilla Linux on
multicore platforms. Since the reliability of the experiments
is based on the quality of CPU timing information, we first
did a clock calibration check on our testbed. After verifying
that our testbed can deliver suitably precise timing measure-
ments, we then used the testbed to evaluate the performance
(1) of load balancing and thread migration mechanisms in
vanilla Linux in this section, and (2) of MC-ORB in Sec-
tion 5. All experiments presented in this section were per-
formed on a dual-core Pentium-IV 3.4GHz machine with
2G RAM and 2048K cache, running Linux version 2.6.17.
All real-time periodic tasks are implemented by real-time
Portable Operating System Interface (POSIX) threads [3].
Periodic timeouts are generated by POSIX timers. Each
timeout is sent as a POSIX signal to a particular thread. The
performance information in this section is also provided as a
guideline for the MC-ORB design and empirical evaluation
discussions in Sections 4 and 5.

3.1 Clock Calibration Check

The x86 processor architecture has a 64 bit counter that
is incremented once per clock cycle. The RDTSC instruc-
tion [7] puts the time-stamp counter (TSC) in registers
edx:eax. The returned 64 bit value represents the count of
ticks since the most recent processor reset. The RDTSC in-
struction previously has been an excellent high-resolution,
low-overhead way of getting CPU timing information. With
the advent of multicore/hyperthreaded CPUs and systems
with multiple CPUs, our first challenge was to determine
whether RDTSC can still provide reliable results. The is-
sue has two components: rate of tick and whether all cores
have identical values in their TSCs. On multicore platforms,
there is no longer any promise that the TSCs of the multiple
CPUs will be synchronized, and you can no longer simply
assume reliable TSC values, unless you lock your program
to using a single CPU.

Since in practice real-time applications may need to rely
on the consistency of TSCs of multiple cores, we ran the
following experiment to measure the offsets of TSC values
between two cores. In this experiment, one POSIX thread
runs on each core. Signals are sent back and forth between
the two threads repeatedly for 5 minutes. As soon as one
thread receives the signal from the other thread, it records
its core’s TSC value, then sends back an ACK signal to the
other thread on the other core.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70

C
D

F

Round Trip Delay (µsec)

measured on core 0
measured on core 1

Figure 1. Round Trip Delay

Clock frequency difference check. The time interval from
when a thread sends a signal until it receives an ACK signal
from the other thread measures the round trip delay (RTD).
We calculated the time by using the CPU frequency (ob-
tained from the /proc directory) to divide the difference of
TSC values at the beginning and end of each round trip.
We also measured the round trip delay from the perspec-
tive of each core. As Figure 1 shows, the round trip de-
lays measured by the TSCs on the different cores were ap-
proximately the same, which alleviates the potential con-
cern about clock frequency differences in our test bed.

Offset check. We represent the TSC offset between core 1
and core 0 (TSC1 − TSC0) as δ, the TSC value on core 0
when it sends a signal as x, the TSC value on core 1 when it
sends the ACK signal after receiving the signal from core 0
as y, and the TSC value on core 0 when it receives the ACK
signal as z. We then have the following equations:

y − x = δ + RTD/2 (1)
z − x = RTD (2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-30 -20 -10 0 10 20 30

C
D

F

Temporal Offset (µsec)

measured on core 0
measured on core 1

Figure 2. Offset Between Cores

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-30 -20 -10 0 10 20 30

C
D

F

Temporal Offset (µsec)

measured on core 0
measured on core 1

Figure 3. Reversed Offset Between Cores

After substituting z−x for RTD in equation (1), we get
δ = 2∗y−x− z. We use this equation to measure the TSC
offset on core 1, then convert it to a temporal offset by using
the CPU frequency to divide it. We also get the TSC offset
between core 0 and core 1 (TSC0 − TSC1) by swapping
the roles of core 0 and core 1 in the above measurement.
Figure 2 shows the cumulative distribution function (CDF)
of temporal offsets between cores on our dual-core testbed
machine. Assuming a non-zero temporal offset exists in our
testbed, to avoid its influence on all measurements in this
section and Section 5, the start and stop TSCs are recorded
on the same core, and half of the round trip time between
cores is used to approximate the one way time from one
core to the other.

To ensure that these offset results are consistent and re-
liable, we then reversed all offset values from core 0 and

compared them with the offset values from core 1 as shown
in Figure 3. They are closely matched with each other,
which validates the accuracy of our observations. All time
measurements in this paper are then based on similar use of
the RDTSC to get high-resolution CPU timing information
from each core.

3.2 Load Balancing Between Cores

When tasks are released in an SMP system, Linux places
each one in a given CPU’s runqueue. Linux does not know
whether a task will be short-lived or will run for a long time.
Therefore, the initial allocation of running tasks to CPUs is
likely suboptimal. To maintain a balanced workload across
CPUs, work can be redistributed, taking work from an over-
loaded CPU and giving it to an underloaded one. The Linux
2.6 scheduler approximates the needed functionality by bal-
ancing the number of threads in each runqueue, which is
helpful if workloads are similar across threads.

At regular intervals, the kernel checks to see whether the
thread counts per CPU runqueue are unbalanced; if they are,
the kernel performs a cross-CPU re-balancing of running
tasks. A drawback of this process is that the new CPU’s
cache is cold for a migrated task (needing to pull its data
into the cache), but cache effects are not the main research
issue of this paper. We are more concerned with the over-
head introduced by such load balancing in a real-time sys-
tem. Especially, when all real-time tasks are pinned to spe-
cific cores according to a global task allocation plan, the
load balancing approach used by Linux can be both useless
and troublesome.

We conducted four experiments to measure the over-
heads associated with the Linux load balancing mechanism.
The goal of these experiments is to characterize the fre-
quency and overhead of the load balancing mechanism in
Linux. Four task sets are randomly generated, one for each
of the four experiments. Two of the task sets contain 10
real-time periodic tasks each, and the other two contain 30
each. The periods of the tasks are uniformly distributed be-
tween 50 msec and 1 sec. All tasks in each set are bound
to one core, which is accomplished by modifying the CPU
affinity of each task. The CPU utilization for that core is
either 0.6 or 1.0, which is randomly divided among all tasks
on that core. Each experiment runs its task set for 5 min-
utes. We put the RDTSC instruction before and after the
move tasks() function in the sched.c file of the 2.6.17 Linux
kernel source code, and write the TSC offsets into a static
kernel level buffer. After re-compiling this modified kernel,
we ran the four experiments described in this subsection on
it.

The first column of Table 1 indicates the experiment, the
second column shows the number of tasks, and the third
column shows the utilization. The 4rd column shows the

total number of times in 5 minutes when Linux found an
imbalance of running threads between cores and attempted
to move tasks for balancing. However, since each task is
bound to a particular core, no actual task migration hap-
pens in these experiments. The time delay of actually mov-
ing a task between cores is discussed in Section 3.3. The
rightmost columns of Table 1 show the overhead: Linux
checks each thread in the busier runqueue to see if it can be
moved to the other core before actually attempting to move
it. Since threads are bound to their current cores, the check
fails for each task, so the overheads for load balancing in
these experiments are minima. The normal overheads of
load balancing are these plus the actual task migration over-
heads (discussed in Section 3.3).

expt. tasks util. imbal. overhead per imbal. (ns)
min mean max

1 10 0.6 211 405 983 1899
2 30 0.6 210 566 1178 2120
3 10 1.0 588 536 854 1463
4 30 1.0 596 671 1124 2069

Table 1. Overhead of Load Balancing Checks

Comparing the overheads for task sets with 10 tasks vs.
30 tasks, there is a small but noticeable difference. Al-
though the scheduler is required to check every thread in
the runqueue to see whether it should be moved from an
overloaded core to another core, the difference in overhead
remains between 12% and 41% as the number of tasks in the
system increases from 10 to 30. Since the number of tasks
on any CPU in many real-time systems is usually less than
30, the task count is not expected to affect the overhead of
load balancing significantly in real-time systems, especially
given the µsec scale overheads involved for each check.

When we compare task sets with different CPU utiliza-
tions, we see a more significant increase in overhead. When
the CPU utilization is 0.6 for a core, that core has idle time,
so the load is “balanced” between the two cores and no task
migration is required. When CPU utilization is 1.0 for one
core, that core is overloaded. The load is always unbal-
anced between the cores and the kernel thus is always eager
to move tasks.

In each of these four experiments, the total overhead of
load balancing in 5 minutes was less than 1.3 msec which
is acceptable for most soft real-time applications. More-
over, it is relatively easy to turn off the load balancing flag
(SD LOAD BALANCE) in the Linux kernel if necessary,
though as we noted previously such modifications may di-
minish portability.

3.3 Thread Migration Between Cores

Real-time tasks may be moved from one overloaded core
to another underloaded core in order to admit more tasks
while still guaranteeing their deadlines. Moving tasks can
be done either automatically by Linux load balancing or
manually by invoking a system call. In Linux, the system
call sched setaffinity() can be used to trigger thread migra-
tion among cores. It also can be used to bind threads to a
particular core.

The sys sched setaffinity() function first looks for the
descriptor of the target thread, then updates the thread’s
CPU affinity mask. Moreover, this function has to check
whether the thread is included in a runqueue of a CPU that
is no longer present in the new affinity mask. In that case,
the thread has to be moved from one runqueue to another
one. To avoid problems due to deadlocks and race condi-
tions, this job is done by special kernel threads (there is one
such migration thread per CPU). Whenever a thread has to
be moved from a runqueue rq1 to another runqueue rq2, the
kernel wakes up the migration thread of the processor asso-
ciated with rq1, which in turn removes the thread from rq1
and inserts it into rq2. Before completing its work, the mi-
gration thread also checks whether (1) the migrated thread
has higher priority than the currently running thread on the
target CPU, and (2) the TIF POLLING NRFLAG flag of
the rq2’s currently running thread is clear (the target CPU is
not actively polling the status of the TIF NEED RESCHED
flag of the thread). If both conditions are true, the migration
thread raises an Inter-processor Interrupt (IPI) and forces
rescheduling on the target CPU. If only the first condition
is true, it sets the TIF NEED RESCHED flag to 1 for the
target CPU which then reschedules tasks at the next polling
time. The migration thread runs at the highest priority, so
the migration procedure is not interrupted by any other real-
time threads.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45

C
D

F

Round Trip Migration Delay (µsec)

measured on core 0
measured on core 1

Figure 4. Self Migration

The delay of thread migration must be considered if
such migration is used in a real-time system (e.g., to move

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45

C
D

F

Round Trip Migration Delay (µsec)

measured on core 0
measured on core 1

Figure 5. Running Thread Migration

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45

C
D

F

Round Trip Migration Delay (µsec)

measured on core 0
measured on core 1

Figure 6. Sleeping Thread Migration

threads between cores to balance utilization as we discuss
in Section 4). We conducted experiments to measure this
delay under different possible conditions, using 10 periodic
real-time tasks. The period for each task is randomly sam-
pled from a uniform distribution between 50 msec and 1
sec. Tasks are uniformly assigned to the two cores and
the CPU utilization of each core is 0.5. The CPU utiliza-
tion is randomly divided among all tasks assigned to that
CPU. All tasks are scheduled with the RMS policy. All
tasks are pinned to their assigned cores at creation time, ex-
cept for one task which is migrated from one core to the
other, and then immediately moved back (by itself or by
another thread). The round trip migration delay is calcu-
lated by reading the begin and end TSCs on the same core,
then subtracting the begin value from the end value. To
avoid the migrated task being blocked by other higher pri-
ority tasks (mixing migration delay and scheduling delay),
the migrated task always has the shortest period. We ran
these experiments under three different scenarios. To en-
sure reliable results, in each scenario we ran the task set
twice with the migrated thread starting on different cores.
Each run lasted 5 minutes and the CDFs of all round trip
migration delays under three different scenarios are showed
respectively in Figures 4, 5 and 6.
Task thread migrates itself (Figure 4). In this scenario,

the migrated task did a round trip migration itself at the be-
ginning of each release. Figure 4 shows the self migration
delay, which ranges between 16 and 45 µsec.
Manager thread migrates a running task thread (Fig-
ure 5). In this scenario, an extra manager thread (with the
highest priority) is added. It migrates the shortest period
task thread from one core to the other, and then immedi-
ately back, every 50 msec. Figure 5 shows the migration
delay if the manager thread migrates the task thread when it
is running, which ranges between 18 and 36 µsec.
Manager thread migrates a sleeping task thread (Fig-
ure 6). Figure 6 shows the delay in the third scenario,
when the manager thread migrates the task thread when it
is waiting for the next release signal, which ranges between
4 and 10 µsec. The delay shown in Figure 5 is significantly
larger than in Figure 6, because when the task thread is not
running, the manager thread does not need to wake up the
migration kernel thread, and only needs to reset the CPU
affinity mask of the task thread. Moreover, we do not see
a significant difference between the results in Figure 4 and
Figure 5, which means that when a task is running, migrat-
ing it to another core either by itself or by another thread
incurs similar delay. These performance results were im-
portant considerations in our design and evaluation of MC-
ORB which are discussed in Sections 4 and 5.

4 Middleware Design

We developed MC-ORB for multicore platforms, with
the following three new features: (1) MC-ORB contains
new layers in the ORB-level server-side request processing
structure to include necessary real-time task support; (2)
MC-ORB provides a new AC service to perform schedu-
lability analysis for each arriving soft real-time task on a
multicore system and to accept or reject the task accord-
ingly; and (3) MC-ORB provides a new TA service that can
allocate each real-time task to an appropriate core, and also
may re-allocate previously admitted real-time tasks to make
room for a newly arriving one.

4.1 Design Challenges and Solution Ap-
proach

Design challenges. In open real-time applications, new
tasks may arrive dynamically and simultaneously on mul-
ticore servers, and require AC and TA services to ensure
satisfaction of their timing requirements. The number of
potential concurrent server tasks is equal to the product of
the number of server operations, the number of different pri-
orities, and the number of potential clients. The number of
potentially concurrent server tasks may vary from applica-
tion to application, so that it is not easy to create the proper

number of threads with the proper priorities at system ini-
tialization time, and a more reasonable approach may be to
handle those tasks as they arrive. However, dynamically
creating and destroying threads add significant overhead,
and should be limited to the extent possible.
Solution approach. To address these challenges, we use
a two-layer architecture in MC-ORB. In the lower connec-
tion layer, static connections are created at system initializa-
tion time. There is a connection for each different priority
for each potential client. Each client thus has its own pre-
connected connection for each particular priority. In the up-
per application layer, we pre-create all the threads which are
going to process server operations and keep them in distinct
pools. All threads in one pool are bound to one particular
core. This approach bounds the cost of the resources that
the server is going to use. The number of threads is equal
to the maximum number of requests the server can handle
simultaneously, which is also the server’s capacity.

Contrast this with the thread-per-request model, in which
a new thread is created for each request. If it receives a large
spurt of requests in a short period of time, the server will
spawn a large number of threads to handle the load. This
would degrade service for all requests and may cause re-
source allocation failures as the load increases. In the thread
pool model, when a request arrives, an existing thread is
chosen from one of the pools to handle the request.

4.2 MC-ORB Architecture

Communication between MC-ORB endsystems is per
the CORBA model: a client stub marshals the parameters
of a remote call into a request message and sends it to a
remote server, which demarshals the request and calls the
appropriate servant object; the reply is then marshalled into
a reply message and sent back to the client, where it is de-
marshalled and the result is returned to the caller.

On the client side, each thread is associated with a
reactor-level timer that dispatches periodic timeout events
to that thread. When the timer fires, the thread sends
the request to the server through a pre-connected priority
lane [11] according to its priority. On the server side, a
reactor [12] is associated with each lane, and connection
threads wait on the reactor for the requests from clients at
each particular priority. The number of connection threads
for each priority is equal to the number of potential clients
in the system, and their priorities are equal to the priority
of that lane. MC-ORB server side architecture contains
four layers. The steps in this architecture, shown in Fig-
ure 7, are: (1) connection threads read the incoming client
requests from the network, demultiplex the requests to con-
nection handlers that perform general Inter-ORB protocol
(GIOP) processing, and insert the connection handlers into
priority queues; (2) a manager thread processes the requests

in order according to their priorities; (3) the manager thread
invokes the AC and TA services for each task; (4) the man-
ager thread dequeues the first application thread from the
proper thread pool, changes the priority of this application
thread according to the request priority, and then passes a
connection handler to it; (5) the application thread collabo-
rate with an Object Adaptor to dispatch requests to servant
operations using the connection handler.

Reactor Reactor Reactor Reactor

Client

Prio 2
1

2

Reactor Reactor Reactor

Op1 Op2 Op3

Thread
Pool #0

Thread
Pool #1

TA 3

4

5

Connection
Layer

Queuing
Layer

Manager
Layer

Application
Layer

Prio 1 Prio 0 Prio 0
Prio 2 Prio 1 Prio 0

AC
3

Figure 7. Single Manager Thread Architecture

Priority-based connection layer. The connection layer is
statically configured with different priorities, e.g., Prio 0,
Prio 1 and Prio 2. In this architecture, each client maintains
a map of pre-established connections to servers. One lane is
maintained for each connection priority in the server ORB
(as shown in Figure 7 on the client side multiple threads
at the same priority may feed into one server-side priority
lane). Once a client connects, the server side ORB creates
a new connection handler for each priority and registers it
with the reactor for that priority lane, and also creates a
connection thread with the appropriate real-time priority to
wait on the reactor. All connections are pre-allocated dur-
ing MC-ORB initialization, which minimizes the latency
between client invocation and servant operation execution.
Once a request is sent, the connection thread reads it from
the network, stores it, and inserts the point to the connection
handler into the proper priority queue in the queuing layer.
Queuing layer. This layer provides the mechanism for
communicating between the connection layer and the man-
ager layer. The queuing layer thus allows the connection
layer and the manager layer to interact in a decoupled “pro-
ducer/consumer” manner. To avoid priority inversion, the
queuing layer consists of multiple queues, one for each pri-
ority. Requests in the highest non-empty priority queue
are processed preferentially by the manager layer. Queu-
ing is necessary, since our system does not bound the num-
ber of requests, so simultaneously arriving requests can be
buffered in the queue while waiting for further processing.

Moreover, the queues are only used to pass pointers to con-
nection handlers, which is very efficient.
Manager layer. A single manager thread (which has high-
est priority) blocks on a condition variable. Once it is noti-
fied, it will process queued requests according to their pri-
orities. After dequeuing a request, if it is not from an admit-
ted task, the manager thread first decides whether to accept
this request and to which core to allocate this request if so,
by invoking the AC and TA services. Otherwise, the man-
ager thread allocates it to the previous assigned core. The
manager thread then dequeues the first waiting application
thread from the thread pool on the proper core, changes the
priority of that application thread to the request’s priority
and passes the connection handler to it.

The connection threads in the lower level can not do AC
and TA directly, because the AC and TA services require ex-
clusive access. An application thread with medium priority
could preempt a connection thread with low priority when
it was accessing the AC and TA services, while other con-
nection threads with high priority were waiting to access the
AC and TA services. This priority inversion could occur if
low priority threads are allowed to enter this critical section.
By using a single manager thread with the highest priority
to access the AC and TA services, we preclude such a pri-
ority inversion. Although many RTOS [14] kernels include
support for either priority inheritance or priority ceilings to
adjust the priorities of threads while they access a critical
section, we developed MC-ORB for operating systems like
vanilla Linux which is widely used for multicore platforms
but does not have such support.

At system initialization time, applications can use inter-
faces provided by the AC and TA services to specify the pro-
cessing requirements of their operations in terms of various
parameters, such as execution time, period, deadline or pri-
ority. Our AC service can support any schedulability based
admission test corresponding to a static-priority uniproces-
sor scheduling algorithm. The AC service performs the ad-
mission test for each arriving task. The TA service assigns
incoming tasks and re-allocates previously admitted tasks
to the proper cores by exhaustively searching for an opti-
mal partition that can satisfy the schedulability utilization
bound according to the static-priority scheduling algorithm
running on the server. Since the numbers of cores and tasks
are limited in our testbed, exhaustive search can be used
on-line by our TA service, though the focus here is not on
the AC and TA algorithms themselves: our middleware ser-
vices can be easily implemented using other AC and TA
algorithms according to each application’s needs.
Application layer. Each application thread waits in a queue
until it is notified by the manager thread, and then ob-
tains the passed connection handler. The target servant is
found, the request is demarshalled, and the application-level
method is executed. When the application thread completes

it work, it enqueues itself back into the thread pool. We
have one thread pool for each core, all threads in each pool
are bound to that particular core, and all application threads
are pre-created and inserted into pools at MC-ORB initial-
ization time. At first, the numbers of threads in all pools
are equal and fixed. The total is equal to the number of re-
quests that the server handles simultaneously. The thread
pool model avoids thread migration overhead (discussed in
Section 3.3), if there are waiting application threads in the
proper pool. If no threads are available in the proper pool,
perhaps because they are all busy processing requests, but
threads are available in other pools, we can migrate a thread
from another core onto the proper core and then execute the
request. If no application threads are available in the whole
system to process the new request, we can either reject the
request because it exceeds the server’s capacity, or expand
the server’s capacity by spawning more threads at run time.

4.3 Leader/Followers Variation

For the manager layer, instead of using a designated
manager thread to invoke the AC and TA services, another
design we investigated is to use a Leader/Followers archi-
tecture. Any application thread may become the leader
thread which in turn invokes the AC and TA services. The
steps in this approach, shown in Figure 8, are: (1) the leader
thread invokes the AC and TA services, and then puts the
priority and CPU affinity information of the current request
into a special shared variable; (2) the leader thread picks
one thread on a different core than its own as the new leader,
wakes up the new leader, then blocks itself on a condition
variable; (3) the new leader reads the information from the
shared variable, changes the priority and CPU affinity of the
old leader thread according to the information, then wakes
up the old leader thread; (4) the old leader thread executes
the requested operation. In step 3, we only allow the new
leader to change the blocked thread’s CPU affinity instead
of the old leader itself changing, because of the overhead
difference shown in Section 3.3.

Comparing this architecture to the single manager thread
architecture described in Section 4.2, for each arriving
request the single manager thread architecture introduces
fewer context switches (1 vs. 2) in the manager layer and
less frequent thread migration (in the Leader/Followers ar-
chitecture there is a 50% chance of migration on each re-
quest), and has acceptable message passing cost. We there-
fore implemented only the single manager thread architec-
ture in MC-ORB. MC-ORB implemented a new ORB-level
server-side request processing structure to include neces-
sary real-time task support by extending nORB [13] small-
footprint real-time ORB, and its performance was evaluated
in Section 5.

Reactor Reactor Reactor Reactor

Client

Prio 2

1

2

Reactor Reactor Reactor

Op1 Op2 Op3

Thread
Pool #0

Thread
Pool #1

TA

3
4

Prio 1 Prio 0 Prio 0
Prio 2 Prio 1 Prio 0

AC
1

Figure 8. Leader/Followers Architecture

5 Middleware Evaluation

The experiments we conducted to evaluate MC-ORB
were performed on a testbed consisting of two dual-core
Pentium-IV 3.4GHz machines with 2G RAM and 2048K
cache each. Both machines ran Linux version 2.6.17. One
machine is used as the client, which sends requests to the
other (server) machine. In the following experiments, each
task set consists of periodic real-time tasks. Task periods
are uniformly distributed between 50 msec and 1 sec. The
deadlines of periodic tasks are equal to their periods. All
tasks are scheduled by the RMS policy. The AC service
does the admission test using the time-demand analysis [8]
for RMS. The TA services provides the optimal partition
under the schedulability utilization bound for RMS [9] by
exhaustive search.

5.1 Overhead Measurement

We measured the extra overhead that MC-ORB intro-
duced on the server side in processing each request to guar-
antee its real-time constraints. We measured the delay from
when the connection thread receives the request until the
proper application thread is notified to process the request
or the task is rejected. In this experiment, we always bound
the connection thread and application thread for the mea-
sured requests to same core to avoid the influence of clock
offsets between cores. This experiment used one task set
with 11 periodic real-time tasks. The total CPU utilization
for the 2 cores was 1.6 and was randomly divided among all
tasks. To avoid a connection thread or an application thread
being blocked by executing other higher priority tasks and
thus mixing true overhead with the scheduling delay, we al-
ways used the requests from the task with the highest prior-
ity in this measurement, and we forced MC-ORB to invoke
the AC and TA services for every request from this highest
priority task. MC-ORB may handle a request in 5 different

ways, so we ran the same task set 5 times under 5 different
scenarios to measure the overheads, the results of which are
shown in Table 2. Each run lasted 5 minutes. The scenarios
were: (1) a task is allocated to the same core as the man-
ager thread; (2) a task is allocated to a different core than
the manager thread; (3) all threads on the proper core have
been used up, and one thread is moved from the other core
to execute the new task; (4) running tasks are reallocated to
allocate the new task; (5) the new task is rejected by the AC
service.

scenario no. minimum mean maximum
1 43 µs 55 µs 109 µs
2 42 µs 58 µs 111 µs
3 50 µs 64 µs 121 µs
4 222 µs 235 µs 289 µs
5 39 µs 50 µs 107 µs

Table 2. Overhead of MC-ORB Extensions

The overheads for scenarios 1 and 2 are close to each
other, which means that allocating tasks to either core does
not make much difference in overhead. The difference be-
tween scenarios 1 and 3 is almost equal to the system over-
head of migrating a sleeping thread which is measured in
Section 3.3. The overhead for scenario 4 is larger than all
other scenarios, because migrating one running thread costs
about 15 µsec (as we measured in Section 3.3). In the run
for scenario 4, we always forced MC-ORB to reallocate all
other running tasks when the requests from the highest pri-
ority task arrives, so the overhead in Table 2 was the maxi-
mum (in practice the actual overhead is proportional to the
number of reallocated tasks). The overhead when rejecting
a task is the smallest of all scenarios. The extra overhead in-
troduced by MC-ORB per request under any scenario was
less than 0.3 msec, which is acceptable for most soft real-
time applications.

5.2 Deadline Miss Ratio Comparison

The Linux operating system only considers the numbers
of running threads when it does load balancing between
cores. When the running threads require significantly dif-
ferent CPU utilization, only balancing the numbers of run-
ning threads can not balance the workloads well between
the cores, which may cause some tasks that require high
CPU utilization to miss their deadlines.

In the experiments presented in this section, each task
set contains two groups of periodic real-time tasks. The to-
tal utilization of a task set is equally divided between the
two groups. One group always contains a fixed number of
periodic real-time tasks (n1 = 10). The other group con-
tains a variable number of periodic real-time tasks, but the

number is no greater than 10 (n2 ≤ 10). These experiments
thus have two changeable factors. One is the total utiliza-
tions of all tasks in a task set. The other is the balance fac-
tor between the two groups (N = n2/n1). The smaller the
balance factor, the greater the utilization difference of indi-
vidual tasks in the two groups. We randomly generated 10
task sets for each pair of changeable factors, and ran each
task set for 5 minutes on both nORB and MC-ORB. The
performance metric is the fraction of workloads with any
deadline miss in the 10 task sets. The results are shown in
Figures 9, 10 and 11 when the total utilization is increased
from 1.4 to 1.5 and to 1.6. We validated the performance of
our AC service by running this experiment when the AC and
TA services in MC-ORB are enabled. There was no dead-
line miss for any workloads in that experiment: all admitted
tasks met their deadlines, although some tasks were rejected
by the AC service. Then, to focus only on the effect of the
TA service in MC-ORB, in the following experiments, we
disabled the AC service in MC-ORB.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.5

Balance Factor (N)

F
ra

ct
io

n
 o

f
w

o
rk

lo
ad

s
w

it
h

 d
ea

d
lin

e
m

is
s

nORB

MC-ORB

Figure 9. Misses when Total Utilization is 1.4

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.5

Balance Factor (N)

F
ra

ct
io

n
 o

f
w

o
rk

lo
ad

s
w

it
h

 d
ea

d
lin

e
m

is
s

nORB

MC-ORB

Figure 10. Misses when Total Utilization is 1.5

For light workload task sets, no bars are shown in Fig-
ure 9 for balance factors 0.2, 0.3 or 0.5, because there is
no deadline miss for any task set in either nORB or MC-
ORB under those 3 scenarios. However, when the balance

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.5

Balance Factor (N)

F
ra

ct
io

n
 o

f
w

o
rk

lo
ad

s
w

it
h

 d
ea

d
lin

e
m

is
s

nORB

MC-ORB

Figure 11. Misses when Total Utilization is 1.6

factor is 0.1, there is still no deadline miss in MC-ORB,
while 4 task sets have deadline misses in nORB. This is
because MC-ORB allocates tasks according to their utiliza-
tions, while nORB relies on the Linux load balancing mech-
anism which only counts the number of running tasks. The
difference is clearer for a small balance factor, since tasks
in each task set have extremely unbalanced workloads when
the balance factor is 0.1. For medium workload task sets
shown in Figure 10, there is no deadline miss in MC-ORB
when the balance factor is 0.1 or 0.5. The performance of
MC-ORB does not change much when the balance factor
decreases, and always outperforms nORB, while the bal-
ance factor affects the performance of nORB significantly.
For most of the randomly generated task sets in Figures 9
and 10, there may exist some partitions that can satisfy suf-
ficient schedulability utilization bound for RMS, and if so
our TA service in MC-ORB can find it through exhaustive
search and can assign tasks according to this optimal par-
tition to guarantee all tasks meet their deadlines. However,
for the heavy workload task sets in Figure 11, there does not
exist any partition that satisfies the sufficient schedulability
utilization bound for RMS. Our TA policy in this case is still
balancing the task utilization between cores. Since the “bal-
ancing” is only done at the task arrival time and is based on
the estimated current utilization information, it can not be
very precise, and the performance is not ideal, while the dy-
namic load balancing at short time intervals in Linux works
better in some cases. However, the goal of our TA service
on multicore platforms is to collaborate with the AC service
and to provide an acceptable assignment which can guaran-
tee all admitted tasks meet their deadlines. This paper does
not focus on the problem of how to reduce the deadline miss
ratio without the AC support.

6 Conclusions

Our work represents a promising step towards develop-
ing a new generation of real-time middleware for soft real-

time tasks on multicore platforms. We first analyzed the
real-time performance of vanilla Linux on multicore plat-
forms. We then designed and implemented a novel real-time
ORB, MC-ORB, which provides schedulability guarantees
for real-time tasks on multicore platforms. Empirical eval-
uations showed that MC-ORB is highly efficient and effec-
tive on a multicore Linux platform.

References

[1] J. Aas. Understanding the Linux 2.6.8.1 CPU scheduler.
Silicon Graphics, Inc., 2005.

[2] D. P. Bovet and M. Cesati. Understanding the Linux Kernel,
3rd edition. O’Reilly Publishers, 2005.

[3] D. R. Butenhof. Programming with POSIX Threads.
Addison-Wesley, Reading, Massachusetts, 1997.

[4] J. M. Calandrino, D. Baumberger, T. Li, S. Hahn, and
J. H. Anderson. Soft Real-Time Scheduling on Performance
Asymmetric Multicore Platforms. In RTAS, 2007.

[5] Institute for Software Integrated Systems.
Component-Integrated ACE ORB (CIAO).
www.dre.vanderbilt.edu/CIAO/, Vanderbilt University.

[6] Institute for Software Integrated Systems. The ACE ORB
(TAO). www.dre.vanderbilt.edu/TAO/, Vanderbilt Univer-
sity.

[7] Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, 2008.

[8] J. P. Lehoczky, L. Sha, J. Strosnider, and H. Tokuda. Fixed
Priority Scheduling Theory for Hard Real-Time Systems. In
Foundations of Real-Time Computing, Scheduling, and Re-
source Management, 1991.

[9] C. Liu and J. Layland. Scheduling Algorithms for Mul-
tiprogramming in a Hard-Real-Time Environment. JACM,
20(1):46–61, Jan. 1973.

[10] Object Management Group. Real-Time CORBA Specifica-
tion, 1.1 edition, Aug. 2002.

[11] I. Pyarali, M. Spivak, R. K. Cytron, and D. C. Schmidt.
Optimizing Threadpool Strategies for Real-Time CORBA.
In Proceedings of the Workshop on Optimization of Middle-
ware and Distributed Systems, 2001.

[12] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for Con-
current and Networked Objects, Volume 2. Wiley & Sons,
New York, 2000.

[13] V. Subramonian, G. Xing, C. Gill, C. Lu, and R. Cytron.
Middleware Specialization for Memory-Constrained Net-
worked Embedded Systems. In RTAS, 2004.

[14] A. Wellings, A. Burns, O. M. dos Santos, and B. M. Brosgol.
Integrating Priority Inheritance Algorithms in the Real-Time
Specification for Java. In ISORC, 2007.

[15] Y. Zhang, C. Gill, and C. Lu. Reconfigurable Real-Time
Middleware for Distributed Cyber-Physical Systems with
Aperiodic Events. In ICDCS, 2008.

[16] Y. Zhang, C. Lu, C. Gill, P. Lardieri, and G. Thaker. Middle-
ware Support for Aperiodic Tasks in Distributed Real-Time
Systems. In RTAS, 2007.

	Real-Time Performance and Middleware on Multicore Linux Platforms
	Recommended Citation
	Real-Time Performance and Middleware on Multicore Linux Platforms

	tmp.1418338203.pdf.kODTs

	Abstract: Abstract: An increasing number of distributed real-time applications are running on multicore platforms. However, existing real-time middleware (e.g., Real-Time CORBA) lacks support for scheduling soft real-time tasks on multicore platforms while guaranteeing their time constraints will be satisfied. This paper makes three contributions to the state of the art in real-time system software for multicore platforms. First, it offers what is to our knowledge the first experimental analysis of real-time performance for vanilla Linux primitives on multicore platforms. Second, it presents MC-ORB, the first real-time object request broker (ORB), designed to exploit the features of multicore platforms, with admission control and task allocation services that can provide schedulability guarantees for soft real-time tasks on multicore platforms. Third, it gives a performance evaluation of MC-ORB on a Linux multicore testbed, the results of which demonstrate the efficiency and effectiveness of MC-ORB.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email: Corresponding Author: yfzhang@cse.wustl.edu, cdgill@cse.wustl.edu, lu@cse.wustl.edu
	Date: May 26, 2008
	Author: Authors: Yuanfang Zhang, Christopher Gill and Chenyang Lu
	Title: Real-Time Performance and Middleware on Multicore Linux Platforms
	ReportNumber: 2008-10
	DepartmentName: Department of Computer Science & Engineering

