66,790 research outputs found

    Harnessing poly(ionic liquid)s for sensing applications

    Get PDF
    The interest in poly(ionic liquid)s for sensing applications is derived from their strong interactions to a variety of analytes. By combining the desirable mechanical properties of polymers with the physical and chemical properties of ILs, new materials can be created. The tunable nature of both ionic liquids and polymers allows for incredible diversity, which is exemplified in their broad applicability. In this article we examine the new field of poly(ionic liquid) sensors by providing a detailed look at the current state-of-the-art sensing devices for solvents, gases, biomolecules, pH, and anions

    The A2667 Giant Arc at z=1.03: Evidence for Large-scale Shocks at High Redshift

    Full text link
    We present the spatially resolved emission line ratio properties of a ~10^10 M_sun star-forming galaxy at redshift z=1.03. This galaxy is gravitationally lensed as a triple-image giant arc behind the massive lensing cluster Abell 2667. The main image of the galaxy has magnification factors of 14+/-2.1 in flux and ~ 2 by 7 in area, yielding an intrinsic spatial resolution of 115-405 pc after AO correction with OSIRIS at KECK II. The HST morphology shows a clumpy structure and the H\alpha\ kinematics indicates a large velocity dispersion with V_{max} sin(i)/\sigma ~ 0.73, consistent with high redshift disk galaxies of similar masses. From the [NII]/H\alpha\ line ratios, we find that the central 350 parsec of the galaxy is dominated by star formation. The [NII]/H\alpha\ line ratios are higher in the outer-disk than in the central regions. Most noticeably, we find a blue-shifted region of strong [NII]/H\alpha\ emission in the outer disk. Applying our recent HII region and slow-shock models, we propose that this elevated [NII]/H\alpha\ ratio region is contaminated by a significant fraction of shock excitation due to galactic outflows. Our analysis suggests that shocked regions may mimic flat or inverted metallicity gradients at high redshift.Comment: 11 pages, 9 figures, ApJ accepte

    Detection of Extended Hot Water in the Outflow from NGC 2071

    Full text link
    We report the results of spectroscopic mapping observations carried out toward a ~1 min x 1 min region within the northern lobe of the outflow from NGC 2071 using the Infrared Spectrograph (IRS) of the Spitzer Space Telescope. These observations covered the 5.2-37 um spectral region and have led to the detection of a number of ionic, atomic, and molecular lines, including fine-structure emission of Si+, Fe+, S++, S, the S(0)-S(7) pure rotational lines of H2, the R(3) and R(4) transitions of HD, and at least 11 transitions of H2O. In addition, the 6.2, 7.4, 7.6, 7.9, 8.6 and 11.3 um PAH emission bands were also observed and several transitions of OH were tentatively detected. Most of the detected line transitions were strong enough to map including, for the first time, three transitions of hot H2O. We find that: (1) the water emission is extended; (2) the extended emission is aligned with the outflow; and, (3) the spatial distribution of the water emission generally follows that observed for H2. Based on the measured line intensities, we derive an HD abundance relative to H2 of 1.1-1.8 10^-5 and an H2O number density of 12-2 cm^3. The H2 density in the water-emitting region is not well constrained by our observations, but is likely between 3 10^4 and 10^6 cm^3, yielding an H2O abundance relative to H2 of between 2 10^-5 and 6 10^-4. Future observations planned for the Herschel Space Observatory should greatly improve the density estimate, and thus our knowledge of the H2O abundance, for the water-emitting regions reported here. Finally, we note a possible departure from the H2O ortho-to-para ratio of 3:1 expected for water formed in hot post-shocked gas, suggesting that a significant fraction of the water vapor we detect may arise from H2O sputtered from cold dust grains.Comment: 35 pages, 15 figures, 4 tables, accepted for publication in Ap

    Mapping warm molecular hydrogen with Spitzer's Infrared Array Camera (IRAC)

    Full text link
    Photometric maps, obtained with Spitzer's Infrared Array Camera (IRAC), can provide a valuable probe of warm molecular hydrogen within the interstellar medium. IRAC maps of the supernova remnant IC443, extracted from the Spitzer archive, are strikingly similar to spectral line maps of the H2 pure rotational transitions that we obtained with the Infrared Spectrograph (IRS) instrument on Spitzer. IRS spectroscopy indicates that IRAC Bands 3 and 4 are indeed dominated by the H2 v=0-0 S(5) and S(7) transitions, respectively. Modeling of the H2 excitation suggests that Bands 1 and 2 are dominated by H2 v=1-0 O(5) and v=0-0 S(9). Large maps of the H2 emission in IC433, obtained with IRAC, show band ratios that are inconsistent with the presence of gas at a single temperature. The relative strengths of IRAC Bands 2, 3, and 4 are consistent with pure H2 emission from shocked material with a power-law distribution of gas temperatures. CO vibrational emissions do not contribute significantly to the observed Band 2 intensity. Assuming that the column density of H2 at temperatures T to T+dT is proportional to T raised to the power -b for temperatures up to 4000 K, we obtained a typical estimate of 4.5 for b. The power-law index, b, shows variations over the range 3 to 6 within the set of different sight-lines probed by the maps, with the majority of sight-lines showing b in the range 4 to 5. The observed power-law index is consistent with the predictions of simple models for paraboloidal bow shocks.Comment: 27 pages, including 11 figures. Accepted for publication in Ap

    Performance Analysis of a Dual-Hop Cooperative Relay Network with Co-Channel Interference

    Get PDF
    This paper analyzes the performance of a dual-hop amplify-and-forward (AF) cooperative relay network in the presence of direct link between the source and destination and multiple co-channel interferences (CCIs) at the relay. Specifically, we derive the new analytical expressions for the moment generating function (MGF) of the output signal-to-interference-plus-noise ratio (SINR) and the average symbol error rate (ASER) of the relay network. Computer simulations are given to confirm the validity of the analytical results and show the effects of direct link and interference on the considered AF relay network
    corecore