1,064 research outputs found
New insight into the low-energy He spectrum
The spectrum of He was studied by means of the He(,)He
reaction at a lab energy of 25 MeV/n and small center of mass (c.m.) angles.
Energy and angular correlations were obtained for the He decay products by
complete kinematical reconstruction. The data do not show narrow states at
1.3 and 2.4 MeV reported before for He. The lowest resonant
state of He is found at about 2 MeV with a width of 2 MeV and is
identified as . The observed angular correlation pattern is uniquely
explained by the interference of the resonance with a virtual state
(limit on the scattering length is obtained as fm), and with
the resonance at energy MeV.Comment: 5 pages, 4 figures, 2 table
Long-Time Asymptotics of Perturbed Finite-Gap Korteweg-de Vries Solutions
We apply the method of nonlinear steepest descent to compute the long-time
asymptotics of solutions of the Korteweg--de Vries equation which are decaying
perturbations of a quasi-periodic finite-gap background solution. We compute a
nonlinear dispersion relation and show that the plane splits into
soliton regions which are interlaced by oscillatory regions, where
is the number of spectral gaps.
In the soliton regions the solution is asymptotically given by a number of
solitons travelling on top of finite-gap solutions which are in the same
isospectral class as the background solution. In the oscillatory region the
solution can be described by a modulated finite-gap solution plus a decaying
dispersive tail. The modulation is given by phase transition on the isospectral
torus and is, together with the dispersive tail, explicitly characterized in
terms of Abelian integrals on the underlying hyperelliptic curve.Comment: 45 pages. arXiv admin note: substantial text overlap with
arXiv:0705.034
Physically Realistic Solutions to the Ernst Equation on Hyperelliptic Riemann Surfaces
We show that the class of hyperelliptic solutions to the Ernst equation (the
stationary axisymmetric Einstein equations in vacuum) previously discovered by
Korotkin and Neugebauer and Meinel can be derived via Riemann-Hilbert
techniques. The present paper extends the discussion of the physical properties
of these solutions that was begun in a Physical Review Letter, and supplies
complete proofs. We identify a physically interesting subclass where the Ernst
potential is everywhere regular except at a closed surface which might be
identified with the surface of a body of revolution. The corresponding
spacetimes are asymptotically flat and equatorially symmetric. This suggests
that they could describe the exterior of an isolated body, for instance a
relativistic star or a galaxy. Within this class, one has the freedom to
specify a real function and a set of complex parameters which can possibly be
used to solve certain boundary value problems for the Ernst equation. The
solutions can have ergoregions, a Minkowskian limit and an ultrarelativistic
limit where the metric approaches the extreme Kerr solution. We give explicit
formulae for the potential on the axis and in the equatorial plane where the
expressions simplify. Special attention is paid to the simplest non-static
solutions (which are of genus two) to which the rigidly rotating dust disk
belongs.Comment: 32 pages, 2 figures, uses pstricks.sty, updated version (October 7,
1998), to appear in Phys. Rev.
Sleep quality in middle-aged and elderly Chinese: distribution, associated factors and associations with cardio-metabolic risk factors
Background
Poor sleep quality has been associated with increased risk of heart disease, diabetes and mortality. However, limited information exists on the distribution and determinants of sleep quality and its associations with cardio-metabolic risk factors in Chinese populations. We aimed to evaluate this in the current study.
Methods
A cross-sectional survey conducted in 2005 of 1,458 men and 1,831 women aged 50â70 years from urban and rural areas of Beijing and Shanghai. Using a questionnaire, sleep quality was measured in levels of well, common and poor. Comprehensive measures of socio-demographical and health factors and biomarkers of cardio-metabolic disease were recorded. These were evaluated in association with sleep quality using logistic regression models.
Results
Half of the population reported good sleep quality. After adjusting for potential confounders, women and Beijing residents had almost half the probability to report good sleep quality. Good physical and mental health (good levels of self-rated health (OR 2.48; 95%CI 2.08 to 2.96) and no depression (OR 4.05; 95%CI 3.12 to 5.26)) related to an increased chance of reporting good sleep quality, whereas short sleep duration (<7 hrs OR 0.10; 95%CI 0.07 to 0.14)) decreased it substantially. There were significant associations between levels of sleep quality and concentrations of plasma insulin, total and LDL cholesterol, and index of insulin resistance.
Conclusion
Levels of good sleep quality in middle-age and elderly Chinese were low. Gender, geographical location, self-rated health, depression and sleep quantity were major factors associated with sleep quality. Prospective studies are required to distil the factors that determine sleep quality and the effects that sleep patterns exert on cardio-metabolic health
Shapiro Effect as a Possible Cause of the Low-Frequency Pulsar Timing Noise in Globular Clusters
A prolonged timing of millisecond pulsars has revealed low-frequency
uncorrelated noise, presumably of astrophysical origin, in the pulse arrival
time (PAT) residuals for some of them. In most cases, pulsars in globular
clusters show a low-frequency modulation of their rotational phase and spin
rate. The relativistic time delay of the pulsar signal in the curved space time
of randomly distributed and moving globular cluster stars (the Shapiro effect)
is suggested as a possible cause of this modulation.
Given the smallness of the aberration corrections that arise from the
nonstationarity of the gravitational field of the randomly distributed ensemble
of stars under consideration, a formula is derived for the Shapiro effect for a
pulsar in a globular cluster. The derived formula is used to calculate the
autocorrelation function of the low-frequency pulsar noise, the slope of its
power spectrum, and the behavior of the statistic that characterizes
the spectral properties of this noise in the form of a time function. The
Shapiro effect under discussion is shown to manifest itself for large impact
parameters as a low-frequency noise of the pulsar spin rate with a spectral
index of n=-1.8 that depends weakly on the specific model distribution of stars
in the globular cluster. For small impact parameters, the spectral index of the
noise is n=-1.5.Comment: 23 pages, 6 figure
The Majorana neutrino masses, neutrinoless double beta decay and nuclear matrix elements
The effective Majorana neutrino mass is evaluated by using the latest results
of neutrino oscillation experiments. The problems of the neutrino mass
spectrum,absolute mass scale of neutrinos and the effect of CP phases are
addressed. A connection to the next generation of the neutrinoless double beta
decay (0nbb-decay) experiments is discussed. The calculations are performed for
76Ge, 100Mo, 136Xe and 130Te by using the advantage of recently evaluated
nuclear matrix elements with significantly reduced theoretical uncertainty. An
importance of observation of the 0nbb-decay of several nuclei is stressed.Comment: 29 pages, 5 figures, EXO (10 t) experiment considere
Double Beta Decay
We review recent developments in double-beta decay, focusing on what can be
learned about the three light neutrinos in future experiments. We examine the
effects of uncertainties in already measured neutrino parameters and in
calculated nuclear matrix elements on the interpretation of upcoming
double-beta decay measurements. We then review a number of proposed
experiments.Comment: Some typos corrected, references corrected and added. A less blurry
version of figure 3 is available from authors. 41 pages, 5 figures, submitted
to J. Phys.
Production of Single W Bosons at \sqrt{s}=189 GeV and Measurement of WWgamma Gauge Couplings
Single W boson production in electron-positron collisions is studied with the
L3 detector at LEP. The data sample collected at a centre-of-mass energy of
\sqrt{s} = 188.7GeV corresponds to an integrated luminosity of 176.4pb^-1.
Events with a single energetic lepton or two acoplanar hadronic jets are
selected. Within phase-space cuts, the total cross-section is measured to be
0.53 +/- 0.12 +/- 0.03 pb, consistent with the Standard Model expectation.
Including our single W boson results obtained at lower \sqrt{s}, the WWgamma
gauge couplings kappa_gamma and lambda_gamma are determined to be kappa_gamma =
0.93 +/- 0.16 +/- 0.09 and lambda_gamma = -0.31 +0.68 -0.19 +/- 0.13
Measurement of the W+W-gamma Cross Section and Direct Limits on Anomalous Quartic Gauge Boson Couplings at LEP
The process e+e- -> W+W-gamma is analysed using the data collected with the
L3 detector at LEP at a centre-of-mass energy of 188.6GeV, corresponding to an
integrated luminosity of 176.8pb^-1. Based on a sample of 42 selected W+W-
candidates containing an isolated hard photon, the W+W-gamma cross section,
defined within phase-space cuts, is measured to be: sigma_WWgamma = 290 +/- 80
+/- 16 fb, consistent with the Standard Model expectation. Including the
process e+e- -> nu nu gamma gamma, limits are derived on anomalous
contributions to the Standard Model quartic vertices W+W- gamma gamma and W+W-Z
gamma at 95% CL: -0.043 GeV^-2 < a_0/Lambda^2 < 0.043 GeV^-2 0.08 GeV^-2 <
a_c/Lambda^2 < 0.13 GeV^-2 0.41 GeV^-2 < a_n/Lambda^2 < 0.37 GeV^-2
Search for an invisibly decaying Higgs boson in e^+e^- collisions at \sqrt{s} = 183 - 189 GeV
A search for a Higgs boson decaying into invisible particles is performed
using the data collected at LEP by the L3 experiment at centre-of-mass energies
of 183 GeV and 189 GeV. The integrated luminosities are respectively 55.3 pb^-1
and 176.4 pb^-1. The observed candidates are consistent with the expectations
from Standard Model processes. In the hypothesis that the production cross
section of this Higgs boson equals the Standard Model one and the branching
ratio into invisible particles is 100%, a lower mass limit of 89.2 GeV is set
at 95% confidence level
- âŠ