5,997 research outputs found
Realizability of stationary spherically symmetric transonic accretion
The spherically symmetric stationary transonic (Bondi) flow is considered a
classic example of an accretion flow. This flow, however, is along a
separatrix, which is usually not physically realizable. We demonstrate, using a
pedagogical example, that it is the dynamics which selects the transonic flow.Comment: 4 pages in REVTeX with 2 figures. Typos have been corrected and some
alterations have been made in the version published in Physical Review
Spherical Bondi accretion onto a magnetic dipole
Quasi-spherical supersonic (Bondi-type) accretion to a star with a dipole
magnetic field is investigated using resistive magnetohydrodynamic simulations.
A systematic study is made of accretion to a non-rotating star, while sample
results for a rotating star are also presented. A new stationary subsonic
accretion flow is found with a steady rate of accretion to the magnetized star
smaller than the Bondi accretion rate. Dependences of the accretion rate and
the flow pattern on the magnetic momentum of the star and the magnetic
diffusivity are presented. For slow star's rotation the accretion flow is
similar to that in non-rotating case, but in the case of fast rotation the
structure of the subsonic accretion flow is fundamentally different and
includes a region of ``propeller'' outflow. The methods and results described
here are of general interest and can be applied to systems where matter
accretes with low angular momentum.Comment: 15 pages, 15 figures, used emulapj.st
Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS
We report on a direct search for sub-GeV dark photons (A') which might be
produced in the reaction e^- Z \to e^- Z A' via kinetic mixing with photons by
100 GeV electrons incident on an active target in the NA64 experiment at the
CERN SPS. The A's would decay invisibly into dark matter particles resulting in
events with large missing energy. No evidence for such decays was found with
2.75\cdot 10^{9} electrons on target. We set new limits on the \gamma-A' mixing
strength and exclude the invisible A' with a mass < 100 MeV as an explanation
of the muon g_\mu-2 anomaly.Comment: 6 pages, 3 figures; Typos corrected, references adde
Final NOMAD results on nu_mu->nu_tau and nu_e->nu_tau oscillations including a new search for nu_tau appearance using hadronic tau decays
Results from the nu_tau appearance search in a neutrino beam using the full
NOMAD data sample are reported. A new analysis unifies all the hadronic tau
decays, significantly improving the overall sensitivity of the experiment to
oscillations. The "blind analysis" of all topologies yields no evidence for an
oscillation signal. In the two-family oscillation scenario, this sets a 90%
C.L. allowed region in the sin^2(2theta)-Delta m^2 plane which includes
sin^2(2theta)<3.3 x 10^{-4} at large Delta m^2 and Delta m^2 < 0.7 eV^2/c^4 at
sin^2(2theta)=1. The corresponding contour in the nu_e->nu_tau oscillation
hypothesis results in sin^2(2theta)<1.5 x 10^{-2} at large Delta m^2 and Delta
m^2 < 5.9 eV^2/c^4 at sin^2(2theta)=1. We also derive limits on effective
couplings of the tau lepton to nu_mu or nu_e.Comment: 46 pages, 16 figures, Latex, to appear on Nucl. Phys.
A Precise Measurement of the Muon Neutrino-Nucleon Inclusive Charged Current Cross-Section off an Isoscalar Target in the Energy Range 2.5 < E_\nu < 40 GeV by NOMAD
We present a measurement of the muon neutrino-nucleon inclusive charged
current cross-section, off an isoscalar target, in the neutrino energy range
GeV. The significance of this measurement is its
precision, % in GeV, and % in GeV regions, where significant uncertainties in previous
experiments still exist, and its importance to the current and proposed long
baseline neutrino oscillation experiments.Comment: 14 pages, 3 figures, submitted to Phys.Lett.
Prediction of Neutrino Fluxes in the NOMAD Experiment
The method developed for the calculation of the flux and composition of the
West Area Neutrino Beam used by NOMAD in its search for neutrino oscillations
is described. The calculation is based on particle production rates computed
using a recent version of FLUKA and modified to take into account the cross
sections measured by the SPY and NA20 experiments. These particles are
propagated through the beam line taking into account the material and magnetic
fields they traverse. The neutrinos produced through their decays are tracked
to the NOMAD detector. The fluxes of the four neutrino flavours at NOMAD are
predicted with an uncertainty of about 8% for nu(mu) and nu(e), 10% for
antinu(mu), and 12% for antinu(e). The energy-dependent uncertainty achieved on
the R(e, mu) prediction needed for a nu(mu)->nu(e) oscillation search ranges
from 4% to 7%, whereas the overall normalization uncertainty on this ratio is
4.2%.Comment: 43 pages, 20 figures. Submitted to Nucl. Phys.
Inclusive production of and mesons in charged current interactions
The inclusive production of the meson resonances ,
and in neutrino-nucleus charged current interactions has been
studied with the NOMAD detector exposed to the wide band neutrino beam
generated by 450 GeV protons at the CERN SPS. For the first time the
meson is observed in neutrino interactions. The statistical
significance of its observation is 6 standard deviations. The presence of
in neutrino interactions is reliably established. The average
multiplicity of these three resonances is measured as a function of several
kinematic variables. The experimental results are compared to the
multiplicities obtained from a simulation based on the Lund model. In addition,
the average multiplicity of in antineutrino - nucleus
interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.
- …