58 research outputs found

    Antibodies Elicited by Inactivated Propionibacterium acnes-Based Vaccines Exert Protective Immunity and Attenuate the IL-8 Production in Human Sebocytes: Relevance to Therapy for Acne Vulgaris

    Get PDF
    Propionibacterium acnes is a key pathogen involved in the progression of inflammation in acne vulgaris. We examined whether vaccination against P. acnes suppressed P. acnes-induced skin inflammation. Inactivation of P. acnes with heat was employed to create a P. acnes-based vaccine. Intranasal immunization in mice with this inactivated vaccine provoked specific antibodies against P. acnes. Most notably, immunization with inactivated vaccines generated in vivo protective immunity against P. acnes challenge and facilitated the resolution of ear inflammation in mice. In addition, antibodies elicited by inactivated vaccines effectively neutralized the cytotoxicity of P. acnes and attenuated the production of proinflammatory cytokine IL-8 in human sebocyte SZ95 cells. Intranasal immunization using heat-inactivated P. acnes-based vaccines provided a simple modality to develop acne vaccines. These observations highlight the concept that development of vaccines targeting microbial products may represent an alternative strategy to conventional antibiotic therapy

    Detection of Multiple Human Papillomavirus Genotypes in Anal Carcinoma

    Get PDF
    Infection with human papillomavirus (HPV) is a major risk factor for development of anal squamous cell carcinoma. Despite over 100 genotypes of the virus, HPV 16 and 18 are considered pathogenic as they are seen in the majority of cervical and anal cancers. We have employed a custom microarray to examine DNA for several HPV genotypes. We aimed to determine the accuracy of our microarray in anal cancer DNA for HPV genotypes compared to the DNA sequencing gold standard

    Defining the clinical role of adapted digital light field photography in the treatment of HIV-induced Kaposi\u27s sarcoma lesions

    Get PDF
    Kaposi’s sarcoma (KS): a vascular tumor associated with HHV8 and HIV infection KS burden at Maputo Central Hospital (MCH): •Referral center for all of southern Mozambique, 1500 beds, \u3e65% HIV+ patients on medical services •Dermatology ward: 50 beds, \u3e30% of admitted patients suffer from Kaposi’s sarcoma and its complications •10-15 cases/month admitted with advanced KS; additional 15-20 cases/month treated outpatient •KS is the most common form of malignancy seen at MCH among men, second most frequent among women Current KS standard of care: •First line treatment: chemo- and concomitant antiretroviral-therapy •Pre-treatment photographs rarely taken to establish a baseline for therapeutic monitoring •Post-therapy improvement is based on gross examination and clinical judgment •Tracking correlation between therapy dosing and shrinkage of lesion size is difficult due to variation and number of lesions Aim of the study: determine the utility of adapted digital light field photography in a resource-limited setting and establish best clinical practice for future KS monitoring via photograph

    Vaccination Targeting a Surface Sialidase of P. acnes: Implication for New Treatment of Acne Vulgaris

    Get PDF
    BACKGROUND: Acne vulgaris afflicts more than fifty million people in the United State and the severity of this disorder is associated with the immune response to Propionibacterium acnes (P. acnes). Systemic therapies for acne target P. acnes using antibiotics, or target the follicle with retinoids such as isotretinoin. The latter systemic treatment is highly effective but also carries a risk of side effects including immune imbalance, hyperlipidemia, and teratogenicity. Despite substantial research into potential new therapies for this common disease, vaccines against acne vulgaris are not yet available. METHODS AND FINDINGS: Here we create an acne vaccine targeting a cell wall-anchored sialidase of P. acnes. The importance of sialidase to disease pathogenesis is shown by treatment of a human sebocyte cell line with recombinant sialidase that increased susceptibility to P. acnes cytotoxicity and adhesion. Mice immunized with sialidase elicit a detectable antibody; the anti-sialidase serum effectively neutralized the cytotoxicity of P. acnes in vitro and P. acnes-induced interleukin-8 (IL-8) production in human sebocytes. Furthermore, the sialidase-immunized mice provided protective immunity against P. acnes in vivo as this treatment blocked an increase in ear thickness and release of pro-inflammatory macrophage inflammatory protein (MIP-2) cytokine. CONCLUSIONS: Results indicated that acne vaccines open novel therapeutic avenues for acne vulgaris and other P. acnes-associated diseases

    A novel approach for determining cancer genomic breakpoints in the presence of normal DNA

    Get PDF
    CDKN2A (encodes p16 INK4A and p14 ARF) deletion, which results in both Rb and p53 inactivation, is the most common chromosomal anomaly in human cancers. To precisely map the deletion breakpoints is important to understanding the molecular mechanism of genomic rearrangement and may also be useful for clinical applications. However, current methods for determining the breakpoint are either of low resolution or require the isolation of relatively pure cancer cells, which can be difficult for clinical samples that are typically contaminated with various amounts of normal host cells. To overcome this hurdle, we have developed a novel approach, designated Primer Approximation Multiplex PCR (PAMP), for enriching breakpoint sequences followed by genomic tiling array hybridization to locate the breakpoints. In a series of proof-of-concept experiments, we were able to identify cancer-derived CDKN2A genomic breakpoints when more than 99.9 % of wild type genome was present in a model system. This design can be scaled up with bioinformatics support and can be applied to validate other candidate cancer-associated loci that are revealed by other more systemic but lower throughput assays

    A Novel Immunogenic Spore Coat-Associated Protein in Bacillus Anthracis: Characterization Via Proteomics Approaches and a Vector-Based Vaccine System

    No full text
    New generation anthrax vaccines have been actively explored with the aim of enhancing efficacies and decreasing undesirable side effects that could be caused by licensed vaccines. Targeting novel antigens and/or eliminating the requirements for multiple needle injections and adjuvants are major objectives in the development of new anthrax vaccines. Using proteomics approaches, we identified a spore coat-associated protein (SCAP ) in Bacillus anthracis. An Escherichia coli vector-based vaccine system was used to determine the immunogenicity of SCAP. Mice generated detectable SCAP antibodies three weeks after intranasal immunization with an intact particle of ultraviolet (UV)- irradiated E coli vector overproducing SCAP. The production of SCAT antibodies was detected via western blotting and SCAP-spotted antigen-arrays. The adjuvant effect of a UV- irradiated E. coli vector eliminates the necessity of boosting and the use of other immunomodulators which will foster the screening and manufacturing of new generation anthrax vaccines. More importantly, the immunogenic SCAP may potentially be a new candidate for the development of anthrax vaccines

    Primers for PAMP

    No full text
    <p>The location of the primers is numbered according to the nucleotide sequence of BAC clone RP11-149I2 (GenBank accession: AL449423)</p

    Primer Approximation Multiplex PCR (PAMP).

    No full text
    <p>The efficiency of PCR amplification is inversely related to the distance of upstream and downstream primers. In this example, primers to amplify genomic sequences around the locus of interest (LOI) are divided into 20 groups: 10 each for forward (F1–F10) and reverse (R1-R10) groups (A). While all of the possible forward and reverse primer pairs are too far to each other for PCR amplification in wild type genome, certain pair of primers is brought closer (“approximated”) due to deletion (F3 and R3) in mutated genome. Multiplex PCR reactions are set and represented as a matrix to include one forward and one reverse primer group. The expected PCR results are shown as gray scale shadows in the matrix (B). This example shows that only group pairs close to breakpoint give PCR products (F3-R3, F3-R4, F4-R3).</p
    corecore