2,412 research outputs found

    A Novel Family of Cyst Proteins with Epidermal Growth Factor Repeats in Giardia lamblia

    Get PDF
    The biological goal of Giardia lamblia life cycle is differentiation into a cyst form (encystation) that can survive in the environment and infect a new host. Since cystic stages are key to transmission of parasites, this differentiation may be a target for interruption of the life cycle. Synthesis and assembly of the extracellular cyst wall are the major hallmarks of this important differentiation. During encystation, cyst wall structural proteins are coordinately synthesized and are mainly targeted to the cyst wall. However, only a few such proteins have been identified to date. In this study, we used a combination of bioinformatics and molecular approaches to identify new cyst structural proteins from G. lamblia and found a group of Epidermal Growth Factor (EGF)-like Repeats containing Cyst Proteins (EGFCPs). Interestingly, the levels of EGFCPs proteins increased significantly during encystation, which matches the characteristics of the Giardia cyst wall protein. Further characterization and localization studies suggest that EGFCPs may function like cyst wall proteins, involved in differentiation of G. lamblia trophozoites into cysts. Our results provide valuable information regarding the function of a new group of cyst proteins in parasite differentiation into cysts and help develop ways to interrupt the parasite life cycle

    住院老年人误吸风险及对误吸认知的调查分析

    Get PDF
    Objective:To investigate the aspiration risk and the aspiration cognition of elderly inpatients. Method: A self-designed questionnaire about the aspiration risk and the aspiration cognition was applied to survey the hospitalized elderly. Result: The aspiration risk of the elderly was higher, up to 41.3%, characterized by coming up with various symptoms. The illnesses the elderly suffering from, types of medication, motion ability and the state of consciousness were the risk factors resulting in aspiration (P<0.05); and only 4.4% of the patients completely understood the knowledge of aspiration and aspiration pneumonitis. Conclusion: Elderly patients are at high risk of aspiration along with various symptoms coming up with, and they have poor knowledge about aspiration and aspiration pneumonitis relatively.目的  调查住院老年患者误吸风险及对误吸的认知情况。方法  采用自行设计的误吸风险及误吸认知调查表对住院老年患者进行调查。结果  老年患者误吸风险较高,高达41.3%,且以多种症状同时出现为特点。所患疾病、服药种类、活动能力及意识状态是误吸发生的危险因素(P<0.05);仅有4.4%的患者完全了解误吸及吸入性肺炎的知识。结论  老年患者误吸风险高,且以多种症状同时出现为特点,对误吸及吸入性肺炎的知晓率较低

    Relativistic Artificial Molecules Realized by Two Coupled Graphene Quantum Dots

    Full text link
    Coupled quantum dots (QDs), usually referred to as artificial molecules, are important not only in exploring fundamental physics of coupled quantum objects, but also in realizing advanced QD devices. However, previous studies have been limited to artificial molecules with nonrelativistic fermions. Here, we show that relativistic artificial molecules can be realized when two circular graphene QDs are coupled to each other. Using scanning tunneling microscopy (STM) and spectroscopy (STS), we observe the formation of bonding and antibonding states of the relativistic artificial molecule and directly visualize these states of the two coupled graphene QDs. The formation of the relativistic molecular states strongly alters distributions of massless Dirac fermions confined in the graphene QDs. Because of the relativistic nature of the molecular states, our experiment demonstrates that the degeneracy of different angular-momentum states in the relativistic artificial molecule can be further lifted by external magnetic fields. Then, both the bonding and antibonding states are split into two peaks

    Extracting the Quantum Geometric Tensor of an Optical Raman Lattice by Bloch State Tomography

    Full text link
    In Hilbert space, the geometry of the quantum state is identified by the quantum geometric tensor (QGT), whose imaginary part is the Berry curvature and real part is the quantum metric tensor. Here, we propose and experimentally implement a complete Bloch state tomography to directly measure eigenfunction of an optical Raman lattice for ultracold atoms. Through the measured eigenfunction, the distribution of the complete QGT in the Brillouin zone is reconstructed, with which the topological invariants are extracted by the Berry curvature and the distances of quantum states in momentum space are measured by the quantum metric tensor. Further, we experimentally test a predicted inequality between the Berry curvature and quantum metric tensor, which reveals a deep connection between topology and geometry

    The role of EGFR double minutes in modulating the response of malignant gliomas to radiotherapy.

    Get PDF
    EGFR amplification in cells having double minute chromosomes (DM) is commonly found in glioblastoma multiforme (GBM); however, how much it contributes to the current failure to treat GBM successfully is unknown. We studied two syngeneic primary cultures derived from a GBM with and without cells carrying DM, for their differential molecular and metabolic profiles, in vivo growth patterns, and responses to irradiation (IR). Each cell line has a distinct molecular profile consistent with an invasive "go" (with DM) or angiogenic "grow" phenotype (without DM) demonstrated in vitro and in intracranial xenograft models. Cells with DM were relatively radio-resistant and used higher glycolytic respiration and lower oxidative phosphorylation in comparison to cells without them. The DM-containing cell was able to restore tumor heterogeneity by mis-segregation of the DM-chromosomes, giving rise to cell subpopulations without them. As a response to IR, DM-containing cells switched their respiration from glycolic metabolism to oxidative phosphorylation and shifted molecular profiles towards that of cells without DM. Irradiated cells with DM showed the capacity to alter their extracellular microenvironment to not only promote invasiveness of the surrounding cells, regardless of DM status, but also to create a pro-angiogenic tumor microenvironment. IR of cells without DM was found primarily to increase extracellular MMP2 activity. Overall, our data suggest that the DM-containing cells of GBM are responsible for tumor recurrence due to their high invasiveness and radio-resistance and the mis-segregation of their DM chromosomes, to give rise to fast-growing cells lacking DM chromosomes

    Fat fraction quantification of lumbar spine: comparison of T1-weighted two-point Dixon and single-voxel magnetic resonance spectroscopy in diagnosis of multiple myeloma

    Get PDF
    PURPOSEWe aimed to investigate the value of T1-weighted two-point Dixon technique and single-voxel magnetic resonance spectroscopy (MRS) in diagnosis of multiple myeloma (MM) through quantifying fat content of vertebral marrow.METHODSA total of 30 MM patients and 30 healthy volunteers underwent T1-weighted two-point Dixon and single-voxel MRS imaging. The fat fraction map (FFM) was reconstructed from the Dixon images using the equation FFM = Lip/In, where Lip represents fat maps and In represents in-phase images. The fat fraction (FF) of MRS was calculated by using the integral area of Lip peak divided by the sum of integral area of Lip peak and water peak.RESULTSFF values measured by the Dixon technique and MRS were significantly decreased in MM patients (45.99%±3.39% and 47.63%±4.38%) compared with healthy controls (64.43%±0.96% and 76.22%±1.91%) (P < 0.001 with both methods). FF values measured by Dixon technique were significantly positively correlated to those measured by MRS in MM (r = 0.837, P < 0.001) and healthy control group (r = 0.735, P < 0.001), respectively. There was no significant difference between area under the curve (AUC) obtained by the Dixon technique (0.878±0.047; range, 0.785 to 0.971; optimal cutoff, 56.35 for healthy controls vs. MM) and MRS (0.883±0.047; range, 0.791 to 0.974; optimal cutoff, 61.00 for healthy controls vs. MM). The ability of Dixon technique to differentiate MM group from healthy controls was equivalent to single-voxel MRS.CONCLUSIONRegarding detection of fat contents in vertebral bone, T1-weighted two-point Dixon technique exhibited equivalent performance to single-voxel MRS in the diagnosis of multiple myeloma. Moreover, two-point Dixon is a more convenient and stable technique for assessing bone marrow changes in MM patients than single-voxel MRS

    Non-catalytic Roles of Tet2 Are Essential to Regulate Hematopoietic Stem and Progenitor Cell Homeostasis

    Get PDF
    The Ten-eleven translocation (TET) enzymes regulate gene expression by promoting DNA demethylation and partnering with chromatin modifiers. TET2, a member of this family, is frequently mutated in hematological disorders. The contributions of TET2 in hematopoiesis have been attributed to its DNA demethylase activity, and the significance of its nonenzymatic functions has remained undefined. To dissect the catalytic and non-catalytic requirements of Tet2, we engineered catalytically inactive Tet2 mutant mice and conducted comparative analyses of Tet2 mutant and Tet2 knockout animals. Tet2 knockout mice exhibited expansion of hematopoietic stem and progenitor cells (HSPCs) and developed myeloid and lymphoid disorders, while Tet2 mutant mice predominantly developed myeloid malignancies reminiscent of human myelodysplastic syndromes. HSPCs from Tet2 knockout mice exhibited distinct gene expression profiles, including downregulation of Gata2. Overexpression of Gata2 in Tet2 knockout bone marrow cells ameliorated disease phenotypes. Our results reveal the non-catalytic roles of TET2 in HSPC homeostasis

    Deciphering microbiomes dozens of meters under our feet and their edaphoclimatic and spatial drivers

    Get PDF
    24 páginas.- 7 figuras.- referenciasMicrobes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients. Here, we used amplicon sequencing to investigate bacteria, archaea, and fungi along fifteen 18-m depth profiles at 20-50-cm intervals across contrasting aridity conditions in semi-arid forest ecosystems of China's Loess Plateau. Our results showed that bacterial and fungal α diversity and bacterial and archaeal community similarity declined dramatically in topsoil and remained relatively stable in deep soil. Nevertheless, deep soil microbiome still showed the functional potential of N cycling, plant-derived organic matter degradation, resource exchange, and water coordination. The deep soil microbiome had closer taxa-taxa and bacteria-fungi associations and more influence of dispersal limitation than topsoil microbiome. Geographic distance was more influential in deep soil bacteria and archaea than in topsoil. We further showed that aridity was negatively correlated with deep-soil archaeal and fungal richness, archaeal community similarity, relative abundance of plant saprotroph, and bacteria-fungi associations, but increased the relative abundance of aerobic ammonia oxidation, manganese oxidation, and arbuscular mycorrhizal in the deep soils. Root depth, complexity, soil volumetric moisture, and clay play bridging roles in the indirect effects of aridity on microbes in deep soils. Our work indicates that, even microbial communities and nutrient cycling in deep soil are susceptible to changes in water availability, with consequences for understanding the sustainability of dryland ecosystems and the whole-soil in response to aridification. Moreover, we propose that neglecting soil depth may underestimate the role of soil moisture in dryland ecosystems under future climate scenarios.This project was supported by the Joint Key Funds of the National Natural Science Foundation of China (U21A20237), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB40020202). M.D.-B. acknowledges support from TED2021-130908B-C41/AEI/10.13039/501100011033/Unión Europea NextGenerationEU/PRTR and from the Spanish Ministry of Science and Innovation for the I + D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. R.O.H. was funded by the Ramón y Cajal program of the MICINN (RYC-2017 22032), by the R&D Project of the Ministry of Science and Innovation PID2019-106004RA-I00 funded by MCIN/AEI/10.13039/501100011033, and by the European Agricultural Fund for Rural Development (EAFRD) through the “Aid to operational groups of the European Association of Innovation (AEI) in terms of agricultural productivity and sustainability,” Reference: GOPC-CA-20-0001Peer reviewe

    MLPerf Inference Benchmark

    Full text link
    Machine-learning (ML) hardware and software system demand is burgeoning. Driven by ML applications, the number of different ML inference systems has exploded. Over 100 organizations are building ML inference chips, and the systems that incorporate existing models span at least three orders of magnitude in power consumption and five orders of magnitude in performance; they range from embedded devices to data-center solutions. Fueling the hardware are a dozen or more software frameworks and libraries. The myriad combinations of ML hardware and ML software make assessing ML-system performance in an architecture-neutral, representative, and reproducible manner challenging. There is a clear need for industry-wide standard ML benchmarking and evaluation criteria. MLPerf Inference answers that call. In this paper, we present our benchmarking method for evaluating ML inference systems. Driven by more than 30 organizations as well as more than 200 ML engineers and practitioners, MLPerf prescribes a set of rules and best practices to ensure comparability across systems with wildly differing architectures. The first call for submissions garnered more than 600 reproducible inference-performance measurements from 14 organizations, representing over 30 systems that showcase a wide range of capabilities. The submissions attest to the benchmark's flexibility and adaptability.Comment: ISCA 202

    Effects of Tai Chi versus Proprioception Exercise Program on Neuromuscular Function of the Ankle in Elderly People: A Randomized Controlled Trial

    Get PDF
    Background. Tai Chi is a traditional Chinese medicine exercise used for improving neuromuscular function. This study aimed to investigate the effects of Tai Chi versus proprioception exercise program on neuromuscular function of the ankle in elderly people. Methods. Sixty elderly subjects were randomly allocated into three groups of 20 subjects per group. For 16 consecutive weeks, subjects participated in Tai Chi, proprioception exercise, or no structured exercise. Primary outcome measures included joint position sense and muscle strength of ankle. Subjects completed a satisfaction questionnaire upon study completion in Tai Chi and proprioception groups. Results. (1) Both Tai Chi group and proprioception exercise group were significantly better than control group in joint position sense of ankle, and there were no significant differences in joint position sense of ankle between TC group and PE group. (2) There were no significant differences in muscle strength of ankle among groups. (3) Subjects expressed more satisfaction with Tai Chi than with proprioception exercise program. Conclusions. None of the outcome measures on neuromuscular function at the ankle showed significant change posttraining in the two structured exercise groups. However, the subjects expressed more interest in and satisfaction with Tai Chi than proprioception exercise
    corecore