277 research outputs found

    Partial Phase Cohesiveness in Networks of Communitinized Kuramoto Oscillators

    Get PDF
    Partial synchronization of neuronal ensembles are often observed in the human brain, which is believed to facilitate communication among anatomical regions demanded by cognitive tasks. Since such neurons are commonly modeled by oscillators, to better understand their partial synchronization behavior, in this paper we study community-driven partial phase cohesiveness in networks of communitinized Kuramoto oscillators, where each community itself consists of a population of all-to-all coupled oscillators. Sufficient conditions on the algebraic connectivity of the selected communities are obtained to guarantee the appearance of their phase cohesiveness, while leaving the remaining communities incoherent. These conditions are further reduced to the form of the lower bounds on the coupling strengths for the connections linking the selected communities. We also show that the ultimate level of the phase cohesiveness that the oscillators asymptotically converge to is predictable. Finally, numeral studies are performed to validate the obtained results

    The gain and loss of chromosomal integron systems in the Treponema species

    Get PDF
    BACKGROUND: Integron systems are now recognized as important agents of bacterial evolution and are prevalent in most environments. One of the human pathogens known to harbor chromosomal integrons, the Treponema spirochetes are the only clade among spirochete species found to carry integrons. With the recent release of many new Treponema genomes, we were able to study the distribution of chromosomal integrons in this genus. RESULTS: We find that the Treponema spirochetes implicated in human periodontal diseases and those isolated from cow and swine intestines contain chromosomal integrons, but not the Treponema species isolated from termite guts. By examining the species tree of selected spirochetes (based on 31 phylogenetic marker genes) and the phylogenetic tree of predicted integron integrases, and assisted by our analysis of predicted integron recombination sites, we found that all integron systems identified in Treponema spirochetes are likely to have evolved from a common ancestor—a horizontal gain into the clade. Subsequent to this event, the integron system was lost in the branch leading to the speciation of T. pallidum and T. phagedenis (the Treponema sps. implicated in sexually transmitted diseases). We also find that the lengths of the integron attC sites shortened through Treponema speciation, and that the integron gene cassettes of T. denticola are highly strain specific. CONCLUSIONS: This is the first comprehensive study to characterize the chromosomal integron systems in Treponema species. By characterizing integron distribution and cassette contents in the Treponema sps., we link the integrons to the speciation of the various species, especially to the pathogens T. pallidum and T. phagedenis

    Partial Phase Cohesiveness in Networks of Networks of Kuramoto Oscillators

    Get PDF
    Partial, instead of complete, synchronization has been widely observed in various networks including, in particular, brain networks. Motivated by data from human brain functional networks, in this technical note, we analytically show that partial synchronization can be induced by strong regional connections in coupled subnetworks of Kuramoto oscillators. To quantify the required strength of regional connections, we first obtain a critical value for the algebraic connectivity of the corresponding subnetwork using the incremental 2-norm. We then introduce the concept of the generalized complement graph, and obtain another condition on the node strength by using the incremental infinity-norm. Under these two conditions, regions of attraction for partial phase cohesiveness are estimated in the forms of the incremental 2- and infinity-norms, respectively. Our result based on the incremental infinity-norm is the first known criterion that applies to non-complete graphs. Numerical simulations are performed on a two-level network to illustrate our theoretical results; more importantly, we use real anatomical brain network data to show how our results may contribute to a better understanding of the interplay between anatomical structure and empirical patterns of synchrony

    Partial Exponential Stability Analysis of Slow-Fast Systems via Periodic Averaging

    Get PDF
    This article presents some new criteria for the partial exponential stability of a slow–fast nonlinear system with a fast scalar variable using periodic averaging methods. Unlike classical averaging techniques, we construct an averaged system by averaging over this fast scalar variable instead of the time variable. We show that the partial exponential stability of the averaged system implies that of the original one. We then apply the obtained criteria to the study of remote synchronization of Kuramoto–Sakaguchi oscillators coupled by a star network with two peripheral nodes. We show that detuning the natural frequency of the central mediating oscillator increases the robustness of the remote synchronization against phase shifts. This article appears to be the first-known attempt to analytically study the phase-unlocked remote synchronization

    Effects Of Simultaneous CO2 Addition To The Fuel And Oxidizer Streams On Soot Formation In Co-flow Diffusion Ethylene Flame

    Get PDF
    Soot formation in a co-flow diffusion ethylene flame with the addition of CO2 to the fuel (the CO2-F), oxidizer (the CO2-O), and fuel/oxidizer (the CO2-F/O) streams was numerically and experimentally investigated in this study. The effects of different CO2 addition ways on soot inception, soot condensation, H-abstraction-C2H2-addition (HACA) and oxidation by O2/OH processes, were quantitatively analyzed by introducing the integrated reaction rates over the whole computational domain. The simulated and experimental results showed that the CO2-F/O was the most effective in inhibiting soot formation and flame temperature, followed by the CO2-O, and the CO2-F. Compared with the CO2-F, the suppression effect of the CO2-O on soot inception was weaker due to the higher concentration of benzo(ghi) fluoranthene (BGHIF). Since the rate of C4H2 formation via C2H4 → C2H3 → C2H2 → C4H2 was inhibited by the CO2-O, lowering the consumption rate of acenaphthalene (A2R5) via C4H2 + A2R5=\u3eA4, more A2R5 converted to BGHIF via A2R5 → A2- → A2 → BGHIF. The suppression effects of different ways of CO2 addition on HACA surface growth and soot condensation were identical: CO2-F \u3c CO2-O \u3c CO2-F/O. The decrease of benzo(a)pyrene (BAPYR) mole fraction accounted for the decline of soot condensation rate, and the decreases of H and OH mole fractions were responsible for the drop of HACA surface growth rate. Compared with the CO2-F, the CO2-O and the CO2-F/O had stronger suppression effects on the soot oxidation by O2 process due to the lower concentration of O2 in the oxidizer stream. Whichever CO2 addition ways were adopted, the soot oxidation by O2 process was more sensitive than the soot oxidation by OH process with the CO2 addition

    Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells.

    Get PDF
    MicroRNAs (miRNAs) loss-of-function phenotypes are mainly induced by chemically modified antisense oligonucleotides. Here we develop an alternative inhibitor for miRNAs, termed \u27small RNA zipper\u27. It is designed to connect miRNA molecules end to end, forming a DNA-RNA duplex through a complementary interaction with high affinity, high specificity and high stability. Two miRNAs, miR-221 and miR-17, are tested in human breast cancer cell lines, demonstrating the 70∼90% knockdown of miRNA levels by 30-50 nM small RNA zippers. The miR-221 zipper shows capability in rescuing the expression of target genes of miR-221 and reversing the oncogenic function of miR-221 in breast cancer cells. In addition, we demonstrate that the miR-221 zipper attenuates doxorubicin resistance with higher efficiency than anti-miR-221 in human breast cancer cells. Taken together, small RNA zippers are a miRNA inhibitor, which can be used to induce miRNA loss-of-function phenotypes and validate miRNA target genes

    Toll family members bind multiple Spatzle proteins and activate antimicrobial peptide gene expression in Drosophila

    Get PDF
    The Toll signaling pathway in Drosophila melanogaster regulates several immune-related functions, including the expression of antimicrobial peptide (AMP) genes. The canonical Toll receptor (Toll-1) is activated by the cytokine Spatzle (Spz-1), but Drosophila encodes eight other Toll genes and five other Spz genes whose interactions with one another and associated functions are less well understood. Here, we conducted in vitro assays in the Drosophila S2 cell line with the Toll/interleukin-1 receptor (TIR) homology domains of each Toll family member to determine if they can activate a known target of Toll-1, the promoter of the antifungal peptide gene drosomycin. All TIR family members activated the drosomycin promoter, with Toll-1 and Toll-7 TIRs producing the highest activation. We found that the Toll-1 and Toll-7 ectodomains bind Spz-1, -2, and -5 and also vesicular stomatitis virus (VSV) virions, and that Spz-1, -2, -5, and VSV all activated the promoters of drosomycin and several other AMP genes in S2 cells expressing full-length Toll-1 or Toll-7. In vivo experiments indicated that Toll-1 and Toll-7 mutants could be systemically infected with two bacterial species (Enterococcus faecalis and Pseudomonas aeruginosa), the opportunistic fungal pathogen Candida albicans and VSV with different survival in adult females and males compared with wild-type fly survival. Our results suggest that all Toll family members can activate several AMP genes. Our results further indicate that Toll-1 and Toll-7 bind multiple Spz proteins and also VSV, but differentially affect adult survival after systemic infection, potentially because of sex-specific differences in Toll-1 and Toll-7 expression
    • …
    corecore