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Partial Phase Cohesiveness in Networks of
Communitinized Kuramoto Oscillators

Yuzhen Qin, Yu Kawano and Ming Cao

Abstract— Partial synchronization of neuronal ensembles are
often observed in the human brain, which is believed to
facilitate communication among anatomical regions demanded
by cognitive tasks. Since such neurons are commonly modeled
by oscillators, to better understand their partial synchronization
behavior, in this paper we study community-driven partial
phase cohesiveness in networks of communitinized Kuramoto
oscillators, where each community itself consists of a population
of all-to-all coupled oscillators. Sufficient conditions on the
algebraic connectivity of the selected communities are obtained
to guarantee the appearance of their phase cohesiveness, while
leaving the remaining communities incoherent. These conditions
are further reduced to the form of the lower bounds on the
coupling strengths for the connections linking the selected
communities. We also show that the ultimate level of the phase
cohesiveness that the oscillators asymptotically converge to is
predictable. Finally, numeral studies are performed to validate
the obtained results.

I. INTRODUCTION

Synchronization phenomena have been observed perva-
sively in complex networks in various scientific disciplines,
including physics, chemistry, biology, social science and
neural science [1]–[3]. The human brain is a typical example
of such complex networks. It has been found that neuronal
ensembles in the human brain have the intrinsic property to
behave as oscillators, which are also connected by chemical
and electrical couplings [4]. The pattern of synchronization
(or phase cohesiveness), which has been seen across regions
of human brain, is believed to facilitate communication
among neuronal ensembles [5]. Only cohesively oscillating
neuronal ensembles can exchange information effectively
because their input and output windows are open at the same
time [6]. However, abnormal patterns of synchronization can
trigger neurological disorder, which is regarded as the cause
of some serious diseases. In particular, epileptic patients
often experience global phase cohesiveness in their brain
[7], while healthy people do not. It suggests that a non-
pathological brain has powerful regulation mechanisms not
only to render synchronization, but also to prevent unneces-
sary synchronization among the neuronal ensembles that do
not need communication [6].

The Kuramoto model and its variances serve as notable
tools to describe the dynamics of coupled neuronal en-
sembles, enabling researchers to study the synchronization
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phenomena in the human brain analytically. It was first
introduced by Kuramoto [8], and has been broadly applied
to various scientific fields. Extensive attention has been
attracted on the global or complete synchronization, where
all the oscillators in the network reach phase cohesiveness
under an identical frequency. Conditions on the critical
coupling strengths to achieve global synchronization are
obtained [9]–[11]. As a more complicated synchronization
pattern, the partial synchronization or partial cohesiveness,
whereby only a part of oscillators achieve phase cohesiveness
and others remain incoherent, ideally characterizes the be-
haviors evidenced in the human brain. The number of studies
addressing the partial synchronization, e.g., [12], [13], is
increasing. However, despite some recent progresses, e.g.,
[14], [15], analytical results on partial synchronization are
much fewer. Moreover, to the best of our knowledge, all the
results for modeling dynamics in the human brain rely on
the simplifying treatment that the dynamics of the neuronal
ensemble in an anatomical region of the brain is modeled as a
single oscillator. In fact, anatomical regions of the brain often
exhibit a “network-of-networks” topology. Each anatomical
region can consist of heterogeneous neuronal ensembles,
which can interact not only within a region but also with
neurons from other regions [16], [17]. This motivates us to
study the more challenging and perhaps more precise model
introduced in [18], where each neuronal ensemble is regarded
as an oscillator, resulting in a community of all-to-all coupled
oscillators in an anatomical region in the brain. At a higher
level, these communities are also interconnected, but do not
form a complete graph in general.

In this paper, we study the partial phase cohesiveness in
such a network of coupled Kuramoto oscillator communi-
ties. Motivated by the observation that synchronization in
the brain may emerge from one anatomical region [19],
we investigate how a single community is able to drive
some other communities and itself to phase cohesiveness by
increasing the corresponding coupling strengths selectively,
while the remaining communities behave incoherently. The
contribution of this paper is threefold. First, different from
the existing theoretical results, we consider the Kuramoto
oscillators that coupled by a “network of networks” topolo-
gy. Second, sufficient conditions on coupling strengths and
algebraic connectivities within the selected communities are
obtained to facilitate partial phase cohesiveness. Since we
do not restrict ourselves to exact phase synchronization in
the selected communities, the conditions provided in [15],
such as the same external couplings and identity of the
natural frequencies in these communities, are not required
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in our work. Third, we provide the analysis of region of
attraction and present the ultimate level of the partial phase
cohesiveness.

The remainder of this paper is organized as follows.
Section II introduces the model we employ and formulates
the problem formally. Sufficient conditions that enable partial
phase cohesiveness are provided in Section III. Section
IV contains our numeral validations. Finally, we draw the
conclusion in Section V.

II. PROBLEM FORMULATION

In this paper, we consider a network of interacting com-
munities, each of which contains a population of interacting
phase oscillators. Inspired by [17], [18], we assume that
the behavior of each neuronal ensemble in an anatomical
region is modeled by a Kuramoto oscillator and analyze
synchronization phenomena in the human brain through the
M communities, each of which itself consists of a number
of all-to-all coupled Kuramoto oscillators. To simplify the
analysis we assume, without loss of generality, that each
community has the same number of oscillators, N . The
formal model is given by

θ̇pi = ωpi +
Kp

N

N∑
n=1

sin(θpn − θ
p
i ) +

M∑
l=1

apl
N

N∑
n=1

sin(θln − θ
p
i ),

i = 1, 2, . . . , N, (1)

where θpi ∈ S1 and ωpi ≥ 0 denote the phase and nat-
ural frequency of the ith oscillator in the pth community
(anatomical region), and S1 represents the unit circle. The
n-torus, the product of the n unit circles, is denoted by
Tn := S1 × · · · × S1. The second term on the right-hand
side of (1) represents the interconnection within community
p. Every community has the same number of oscillators, N ,
and thus the number of oscillators in the whole network
is MN . We assume that each community is well mixed,
i.e., the corresponding graph of N oscillators (within each
community) is complete. Then, the corresponding adjacency
matrix within community p is Cp := KpC, where Kp is
the intrinsic coupling strength, and C := [cij ] ∈ RN×N
satisfies cij = 1 for i 6= j, and cij = 0 otherwise. The
third term represents the connections linking communities,
which is modeled by a connected, undirected, and weighted
graph G(V, E ,A) with the nodes V = {1, . . . ,M} and
edges E ⊂ V × V . The positive weights A determined by
the coupling strength between communities i and j satisfy
aij = aji > 0 if (i, j) ∈ E , otherwise, aij = 0. It is clear
that A := (aij) ∈ RM×M is the weighted adjacency matrix
of the graph G.

Normally, global synchronization across all the regions
hardly occurs, although it has been observed in patients’
brain, e.g., people with epilepsy [18]. Instead, researchers
have observed that some (not all) cortical regions in the
brain achieve phase cohesive when a person is executing a
cognitive task which needs these parts to coordinate, while
the other regions of the brain remain incoherent [20]. We call
this phenomenon partial phase cohesiveness in this paper.

Denote a subset of communities by R = {m1, . . . ,mr} ⊆ V
with 1 ≤ r ≤ M . The partial phase cohesiveness across
communities R is defined formally as follows.

Definition 1: A solution θ : R≥0 → TMN to the M all-
to-all coupled Kuramoto oscillators (1) is said to be partially
phase cohesive across R w.r.t ϕ ∈ [0, π/2) if θ(t) ∈ Sϕ for
all t > 0 and all θ(0) ∈ Sϕ, where

Sϕ = {θ ∈ TMN :|θki − θlj | ≤ ϕ,
∀i, j = 1, . . . , N,∀k, l ∈ R}.

In Definition 1, ϕ is a measure of cohesiveness, i.e., the
smaller ϕ is, the more cohesive the phases of oscillators in
R are. Synchronization across some anatomical regions of
brain is sometimes triggered by a particular region when it
needs other parts to cooperate. This motivates us to study
community-driven partial cohesiveness. We assume that all
the inter-community couplings aij and intrinsic couplings
Kp are initially weak such that no phase cohesive can occur
in the network. Then, we investigate how a community,
which plays the role as a “leader”, is able to achieve
synchronization of the oscillators within itself by increasing
the intrinsic coupling as well as to selectively drive some
of other communities to phase cohesiveness by strengthen-
ing the connections to them. We call the “leader” driving
community and the communities intended to synchronize
target communities. Without loss of generality, we label the
driving community by 1, and the target communities by
2, 3, . . . , r, r ≤M . We also regard 1 as a target community
when we refer to “target communities”. Although the target
communities can in general have no direct inter-connection
with the driving one, as a first step of analysis, we assume
in this paper that the target communities are neighbors of
the driving one, i.e., a1m > 0 for all 2 ≤ m ≤ r. Then, the
problem reduces to seeking for conditions on the couplings
K1 and a1m under which phase cohesiveness takes place in
a subset of communities R := {1, . . . , r}.

III. PHASE COHESIVENESS ANALYSIS

A. Within One Community
We first consider a special case when the driving commu-

nity provokes phase cohesiveness among oscillators within.
In this case, a natural expectation is that if the coupling
strength K1 within the community is sufficiently larger
than the others, then phase cohesiveness occurs within the
community. We present a lower bound on K1.

To study phase cohesiveness within community 1, we use
the incremental dynamics between oscillators θ1i and θ1j ,
i, j = 1, . . . , N in the community. From (1), their dynamics
can be described by

θ̇1i − θ̇1j =ω1
i − ω1

j

+
K1

N

N∑
n=1

(
sin(θ1n − θ1i )− sin(θ1n − θ1j )

)
+

M∑
m=2

a1m
N

N∑
n=1

(
sin(θmn − θ1i )− sin(θmn − θ1j )

)
.

(2)
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Define θp := [θp1 , . . . , θ
p
N ]> ∈ TN and ωp :=

[ωp1 , . . . , ω
p
N ]> ∈ RN≥0 for p ∈ V , where RN≥0 is the set

of non-negative real numbers. Also, define a vector of phase
differences of oscillators in community 1,

δ1 := B>c θ
1 =

[
θ11 − θ22, . . . , θ1N−1 − θ1N

]>
,

where Bc is the incidence matrix of the complete graph. By
using this δ1, we have the following compact form of (2),

δ̇1 = B>c ω
1 − K1

N
B>c Bcsin(δ1) + ā1u1, (3)

where sin(x) := [sin(x1), . . . , sin(xn)], ā1 :=
maxm∈V a1m, and u1 := (uij)i<j ∈ RN(N−1)/2 with

uij :=

M∑
m=2

a1m
ā1N

N∑
n=1

(
sin(θmn − θ1i )− sin(θmn − θ1j )

)
. (4)

This u1 can be viewed as the disturbance to the incremental
dynamics (3).

Let us provide a sufficient condition on K1 such that
phase cohesiveness can occur in community 1. A similar
theorem can be found in [21, Theorem 4.4], which, however,
cannot be directly applied to our case. We treat the external
disturbance u1 in a more relaxed way, and consequently the
required analysis is technically more involved. We explain
the detailed technical differences after the sketch of proof.

Theorem 1: Assume that the coupling strength K1 in the
driving community 1 satisfies the following condition

K1 > Kcritical := ‖B>c ω1‖+
√
N(N − 1)d1, (5)

where

d1 :=

M∑
2=1

a1m (6)

is the degree of community 1. Next, let γ1 ∈ (π/2, π) and
ϕ1 ∈ [0, π/2) be the unique solutions to the equations

(π/2)K1 sinc(γ1)−
√

2N(N − 1)d1 sin(γ1/2) = ‖B>c ω1‖,
(7)

K1 sin(ϕ1)−
√
N(N − 1)d1 = ‖B>c ω1‖, (8)

respectively, where sinc(γ1) := sin(γ1)/γ1. Then, for any
γ ∈ [ϕ1, γ1), the set

Dγ := {θ ∈ TMN : ‖δ1‖ ≤ γ}

is a positively invariant set of the N all-to-all coupled
Kuramoto oscillators (1). In addition, there always exists
µ(γ) < π/2, defined by

µ(γ) :=
‖B>c ω1‖+

√
2N(N − 1)d1 sin(γ/2)

K1 sinc(γ)
, (9)

such that any solution to (1) starting from θ(0) ∈ {θ ∈
TMN : ‖δ1‖ ≤ γ}, γ ∈ [ϕ1, γ1), asymptotically converges
to the set {θ ∈ TMN : ‖δ1‖≤µ(γ)}.

Proof: Due to the page limit, we only provide a sketch
of proof. First, it is not hard to show the each of the solutions
to (7) and (8) exists and is unique, respectively.

Next, we prove that for any γ ∈ [ϕ1, γ1], the set Dγ is
positively invariant. Towards this end, we construct a positive
definite function V1(δ1) = 1

2‖δ1‖
2 and show that the time

derivative of V1(δ1) along the trajectory of (3) is negative
for any µ(γ) < ‖δ1‖ ≤ γ. An important step to show this is
to estimate an upper bound of the external disturbance ‖u1‖.
We estimate it according to

‖u1‖ ≤
√

2N(N − 1)d1 sin(γ/2)/ā1, (10)

which is more relaxed compared to [21, Theorem 4.4].
Finally, since V̇1(δ1) < 0 for ‖δ1‖ > µ(γ), any solution

to (1) starting from θ(0) ∈ {θ ∈ TMN : ‖δ1‖ ≤ γ}, γ ∈
[ϕ1, γ1), asymptotically converges to the set {θ ∈ TMN :
‖δ1‖≤µ(γ)}, then the asymptotic convergence is proven.

Remark 1: As mentioned before Theorem 1, Theorem 4.4
in [21] cannot directly be applied even though we use a
similar Lyapunov function. The disturbance in [21, Theorem
4.4] is regarded to be bounded by a constant, but the upper
bound of the disturbance in our case is a function of γ (see
(10)). This makes the analysis more challenging compared
to [21].

In addition, we identify a set to which any solution to (1)
converges exponentially.

Proposition 1: There always exists a γ̄ ∈ [ϕ1, γ), such
that starting from θ(0) ∈ {θ ∈ TMN : ‖δ1‖ < γ1} any
solution to (1) exponentially converges to the set {θ ∈ TMN :
‖δ1‖<γ̄}.

The proof of Proposition 1 is omitted here due to the page
limit.

B. Community-Driven Partial Cohesiveness

In the previous subsection, we have studied a special
case when phase cohesiveness occurs only in the driving
community. In this subsection, we address a more general
problem in which the number of target communities is r.
Sufficient conditions on the driving couping strengths a1m,
m ∈ R\{1}, and K1 are obtained to ensure that phase
cohesiveness takes place among oscillators in communities
R.

Similar to the single community case, we introduce several
notations. We put the communities in R into a cluster and
rewrite the model (1) into

θ̇pi =ωpi

+
Kp

N

N∑
n=1

sin(θpn − θ
p
i ) +

r∑
m=1

apm
N

N∑
n=1

sin(θmn − θ
p
i )

+

M∑
m=r+1

apl
N

N∑
n=1

sin(θmn − θ
p
i ), p ∈ R, i = 1, . . . , N.

(11)

Let the graph GR := (VR, ER,AR) describe the cou-
plings among all oscillators in R, where VR := {θpi , i =

1, . . . , N, p ∈ R}. Define θ := [θ1
>
, θ2
>
, . . . , θ1

>
]> ∈ TNr

and ω := [ω1>, ω2>, . . . , ωr>]> ∈ RNr. Let Z := [zij ] ∈
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RNr×Nr be the adjacency matrix of the graph GR, which is

Z =


K1

N C a12
N 1N×N · · · a1r

N 1N×N
a12
N 1N×N

K2

N C · · · a2r
N 1N×N

...
...

. . .
...

a1r
N 1N×N

a2r
N 1N×N · · · Kr

N C

 , (12)

where C is the adjacency matrix of a complete graph within
each community as defined in Section II. Let L be the
Laplacian matrix given by L = diag(Z1Nr) − Z. Recall
that the communities 2, . . . , r are neighbors of community
1, and thus GR is connected. Then, the smallest eigenvalue
of L is 0, and let λ2(L) denote the second smallest one.
This eigenvalue λ2(L) is also called algebraic connectivity
of graph GR [22]–[24].

The dynamics of coupled oscillators in the cluster (11) can
be rewritten into a compact form as follows

θ̇i = ωi +

Nr∑
n=1

zin sin (θn − θi)

+

M∑
m=r+1

aµ(i)m

N

N∑
n=1

sin(θmn − θi), i = 1, ...Nr,

where i = 1, 2, . . . , Nr and µ(i) := 1 + bi/Nc. Note that
for x ∈ R, bxc represents the maximum integer less than
or equal to x. In a similar manner as the one community
case, we consider the incremental dynamics between any
oscillators i, j in the cluster,

θ̇i−θ̇j = ωi − ωj +

Nr∑
n=1

zin sin (θn − θi)

−
Nr∑
n=1

zjn sin (θn − θj) + āouij , i, j = 1, ...Nr, (13)

where

āo := max
1≤i≤r

r+1≤j≤M

aij ,

uij :=
M∑

m=r+1

aµ(i)m

āoN

N∑
n=1

sin(θmn − θi)

−
M∑

m=r+1

aµ(j)m

āoN

N∑
n=1

sin(θmn − θj). (14)

Similar to Subsection III-A, uij is taken as a disturbance to
the incremental dynamics (13). Define the phase differences
vector δ := B>c θ ∈ RNr(Nr−1)/2. Then, the incremental
dynamics (13) can be described in a compact form,

δ̇ = B>c ω −B>c B diag({cij}(i,j)∈E)sin(B>θ) + āouR,
(15)

where B and Bc are the incidence matrices of the graph
GR and the complete graph with the same nodes VR,
respectively, and uR := (uij)i<j ∈ RNr(Nr−1)/2.

By extending Theorem 1, let us provide a sufficient
condition on the algebraic connectivity λ2(L) such that phase
cohesiveness occurs among oscillators in R. Since the proof
is similar to Theorem 1, it is omitted here.

Theorem 2: Assume that the algebraic connectivity λ2(L)
of GR is larger than a critical value, i.e., λ2(L) satisfies the
following condition

λ2(L) > λccritical := ‖B>c ω‖+
√

2Nr(Nr − 1)dR, (16)

where dR := maxi∈R
∑M
m=r+1 aim. Next, let γR ∈ (π/2, π]

and ϕR ∈ [0, π/2) be the unique solutions to the following
equations

(π/2)λ2(L) sinc(γR)−
√

2Nr(Nr − 1)dR = ‖B>c ω‖,
λ2(L) sin(ϕR)−

√
2Nr(Nr − 1)dR = ‖B>c ω‖,

respectively. Then for any γ ∈ [ϕR, γR], the set

DγR := {θ ∈ TMN : ‖δ‖ ≤ γ}

is a positively invariant set of the soution to the model (1).
In addition, there always exists µR(γ) < π/2, defined by

µR(γ) :=
‖B>c ω‖+

√
2Nr(Nr − 1)dR

λ2(L) sinc(γ)
, (17)

such that any solution to (1) starting from θ(0) ∈ {θ ∈
TMN : ‖δ‖ ≤ γ}, γ ∈ [ϕR, γR), asymptotically converges
to the set {θ ∈ TMN : ‖δ‖≤µR(γ)}. In other words, the
coupled Kuramoto oscillators (1) are partially phase cohesive
across R = {1, . . . , r} w.r.t µR(γ) ∈ [0, π/2). Moreover,
there exists γ̄R ∈ [ϕR, γ) such that the solution to (1)
exponentially converges to the set {θ ∈ TMN : ‖δ‖ < γ̄R}.

One can interpret B>c ω and uR in (15) as the internal
and external disturbances to the cluster. To achieve partially
phase cohesive irrespective of these disturbances, it is natural
requirement that the algebraic connectivity λ2(L) is strong
enough. Note that B>c ω is a constant in our context, while uc
is time-varying, depending on the phase differences between
oscillators within and outside of the cluster. Theorem 2 sug-
gests that no matter how different these phase differences are,
if the algebraic connectivity within this cluster is sufficiently
large compared to the external couplings, phase cohesiveness
can still occur in the cluster.

Remark 2: Conditions (5) and (16) in Theorems, respec-
tively, 1 and 2 are similar but different even if r = 1.
Acutually, for r = 1, the condition (16) reduces to

λ2(L) > λccritical := ‖B>c ω1‖+
√

2N(N − 1)d1, (18)

where d1 is defined in Theorem 1. Therefore, (18) implies
(5), but not vise versa. That is, Theorem 1 provides a less
conservative condition than Theorem 2 when r = 1.

In what follows, we show the important role that individ-
ual driving couplings, a12, . . . , a1r, play in making up the
algebraic connectivity λ2(L).

Proposition 2: For the adjacency matrix of the graph GR,
the algebraic connectivity λ2(L) satisfies

¯
ad ≤ λ2(L) ≤ Nr

Nr − 1
min
1≤i≤r

(
N − 1

N
Ki +

r∑
m=1

aim

)
,

(19)
where

¯
ad is the minimum value among the intrinsic coupling

in the driving community and the driving couplings, which
is defined by

¯
ad := min{a12, . . . , a1m,K1}.
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Due to the page limit, we omit the proof of Proposition
2. Proposition 2 provides an estimate of how the algebraic
connectivity λ2(L) depends on the intrinsic coupling in the
driving community and the driving couplings. The corollary
below, which follows from Theorem 2 directly, presents a
sufficient condition on these couplings such that the oscilla-
tors in R achieve phase cohesiveness, no matter how weak
the intrinsic coupling within each community is.

Corollary 1: If the intrinsic coupling in the driving com-
munity and all the driving couplings are lower bounded by

¯
ad which satisfies

¯
ad > λccritical, (20)

where the critical value λccritical is defined in (16), then all
the statements in Theorem 2 hold for γR ∈ (π/2, π] and
ϕR ∈ [0, π/2) that are the unique solutions to the following
equations

(π/2)
¯
adN sinc(γR)−

√
2Nr(Nr − 1)d1 = ‖B>c ω‖,

¯
adN sin(ϕR)−

√
2Nr(Nr − 1)d1 = ‖B>c ω‖,

respectively.
Theorem 2 and Corollary 1 suggest that by just increasing

the intrinsic coupling strength and the coupling strengths
among communities correspondingly, the driving community
is able to drive some of its neighbors to phase cohesiveness
selectively. It is worth mentioning that the results in Theorem
2 is still applicable when the target communities are not
direct neighbors of the driving community, as long as the
corresponding algebraic connectivity is sufficiently large.

We observe that the algebraic connectivities, quantified
by K1 and λ2(L) in Theorems 1 and 2, respectively, char-
acterize the convergence speeds for partially phase cohe-
siveness. From Theorem 1, the convergence speed within
the driving community can be improved by only increasing
K1. However, from Theorem 2 and Proposition 1, this is
not enough for improving the convergence speed within the
target communities because it also depends on the coupling
strength a1m,m = 2, . . . , r, between communities 1 and m.
Therefore, it is expected if K1 � a1m, the convergence
speed within the driving community is much faster than that
of the target communities. The difference of the convergence
speeds are further studied through numerical simulations.

IV. NUMERAL EXAMPLES

To validate the results we obtained in Section III, we
perform some numeral studies in this section. We consider
a connected network consisting of 11 communities (see
Fig.1(a)), each of which contains 6 well mixed oscillators
(see Fig.1(b)). The initial inter-community coupling strengths
are given next to the edges respectively in Fig.1(a). We
choose the natural frequencies of the oscillators from a nor-
mal distribution with the mean 3π and the standard deviation
1. The initial intrinsic coupling strengths Km, 1 ≤ m ≤ 11,
are randomly generated to be small enough such that no
phase cohesiveness can occur in any of the communities.
Let 1 be the driving community.

1

3

2

4

8910

11 5

6

7

0.14

0.12
0.06

0.16

0.060.06

a12, 0.03

a14, 0.06

a13, 0.04 0.05

0.06

0.04

0.1

(a) The inter-community network: driving community 1
(red) and target communities 2, 3, 4 (green).

(b) The well mixed
graph within each
community

Fig. 1. The two-layer structure of the network of networks considered.

(a) Phase Cohesiveness in the clus-
ter and incoherence outside

(b) Comparison of the convergence
speed

Fig. 2. Target phase cohesiveness driven by a community.

We first study the case when only the oscillators within
community 1 are supposed to function cohesively. According
to (5), we compute the critical coupling strength Kcritical =
4.5713. We let K1 = 10, and the trajectory of ‖δ1(t)‖ is
plotted in Fig. 3(a). It can be observed that, starting from
‖δ1(0)‖ = γ < γ1, the trajectory of ‖δ1(t)‖ converges to
{δ1 : ‖δ1(t)‖ < µ(γ)}, suggesting that phase cohesiveness
w.r.t µ(γ) occurs in community 1. The results we obtained
in Theorem 1 are verified.

Next, we consider another case when the target commu-
nities is 1, 2, 3, 4. From Theorem 2, we compute the critical
value λcritical = 23.3827, and let K1, a12, a13, a14 = 30
such that λ1(L) > λcritical according to Corollary 1. The
trajectory of ‖δ(t)‖ is plotted in Fig. 3(b), from which
one can observe that the trajectory of ‖δ(t)‖ converges to
{δ : ‖δ(t)‖ < µR(γ)}, suggesting that phase cohesiveness
w.r.t µ(γ) occurs in the cluster R = {1, 2, 3, 4}.

To further numerally investigate how different convergence
speeds can emerge in the cluster R, we relax the requirement
for the initial phases by generating them randomly. We
employ the order parameter introduced in [8] to measure
the degree of phase cohesiveness, which is defined by

reiψ =
1

n

n∑
i=1

eiθj , (21)
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(a) Target community: 1. (b) Target communities: 1, 2, 3, 4.

Fig. 3. The trajectories of ‖δ1‖ (left) and ‖δ‖ (right).

where ψ is the average phase. The value of r satisfies r ∈
[0, 1]. The larger r is, the higher degree of phase cohesiveness
becomes. By plotting the trajectory of r, it is sufficient to
observe the phase evolution. Let K1, a12, a13, a14 be large
enough to facilitate phase cohesiveness in the cluster. One
can observe from Fig. 2(a) that phase cohesiveness occurs
in the cluster, but oscillators outside remain incoherent. In-
terestingly, if K1 is much greater than the driving couplings
r1i, i = 2, 3, 4, the convergence speed of the oscillators in
driving community to phase cohesiveness is much faster than
the rest oscillators in R do, which can be observed in Fig.
2(b). We are interested in studying this phenomenon further
in the future.

V. CONCLUSION

In this paper, we have considered a network of networks
of Kuramoto oscillators, which is motivated by the neu-
ronal dynamics observed in the human brain. Partial rather
than global or complete phase cohesiveness driven by a
community has been investigated since it is the normal
pattern in the brain. We have considered two cases. One
is that the phase cohesiveness takes place only within the
driving community, and the other is that the number of
target communities is r. Sufficient conditions on the intrinsic
coupling strength of the driving community and algebraic
connectivity of the selected communities have been obtained,
respectively. We have also presented lower bounds for the
ultimate level of phase cohesiveness. To validate the obtained
results, numerical simulations have been performed. We are
currently working with cognitive neural scientists to apply
our results to human subjects performing cognitive tasks
requiring retrieval of memory.
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