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Partial Exponential Stability Analysis of Slow-fast Systems via Periodic
Averaging

Yuzhen Qin, Member, IEEE , Yu Kawano, Member, IEEE , and Brian D. O. Anderson, Life Fellow, IEEE , and
Ming Cao, Senior Member, IEEE

Abstract— This letter presents some new criteria for partial ex-
ponential stability of a slow-fast nonlinear system with a fast scalar
variable using periodic averaging methods. Unlike classical aver-
aging techniques, we construct an averaged system by averaging
over this fast scalar variable instead of the time variable. We show
that partial exponential stability of the averaged system implies
that of the original one. We then apply the obtained criteria to the
study of remote synchronization of Kuramoto-Sakaguchi oscilla-
tors coupled by a star network with two peripheral nodes. We show
that detuning the natural frequency of the central mediating oscilla-
tor increases the robustness of the remote synchronization against
phase shifts. This work appears to be the first-known attempt to
analytically study phase-unlocked remote synchronization.

Index Terms— Partial exponential stability, averaging, re-
mote synchronization, Kuramoto-Sakaguchi.

I. INTRODUCTION

Partial stability describes a property of dynamical systems that
only a portion, instead of all, of its states are stable. Different
from standard full-state stability theory which usually deals with
stability of point-wise equilibria, partial stability is more associated
with stability of motions lying in a subspace [1], [2]. It provides
a powerful framework to study a range of application-motivated
theoretical problems, such as spacecraft stabilization by rotating
masses [1], inertial navigation systems [3], transient stability of power
systems [4], and synchronization in complex networks [5], [6].

Some Lyapunov criteria have been established to study partial
stability of nonlinear systems [1], [2, Chap. 4], [7], [8]. However,
when it comes to the analysis of systems with multiple timescales,
the existing results are usually difficult to apply. In fact, time
scale separation is ubiquitous in physical, biological, and ecological
systems [9, Chap. 20], and one often needs to study their partial
stability. Therefore, there is a great need to further develop new
criteria for partial stability analysis, in particular in the setting of
slow-fast systems. In this letter, we aim at developing new criteria for
exponential partial stability of a particular type of slow-fast systems,
wherein the fast variable is a scalar. Various practical systems can
be modeled by this type of slow-fast systems, such as semiconductor
lasers [10], and mixed-mode oscillations in chemical systems [11],
where the fast scalar variables are the photon density and a chemical
concentration, respectively. In particular, fast time-varying systems
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can always be modeled in this way since the time variable t can be
taken as the fast scalar [12].

In full-state stability analysis of fast time-varying systems, aver-
aging methods are widely used to establish criteria for exponential
or asymptotic stability [13, Chap. 10], [14], [15]. Inspired by these
works, we utilize periodic averaging techniques and obtain some
criteria for partial exponential stability of the considered type of slow-
fast systems. We then show that partial exponential stability of the
averaged system implies partial exponential stability of the original
one. The proposed averaging techniques are more general than the
classical one (e.g., [14], [15]) in the sense that the system is averaged
over the fast scalar variable, but not necessarily the time variable.

Next, we apply our obtained results to the study of partial ex-
ponential stability of a concrete slow-fast system that arises from
the remote synchronization problem of coupled oscillators. Remote
synchronization describes the phenomenon wherein oscillators cou-
pled indirectly become synchronized, but the ones connecting them
are not synchronized with them [5]. It is ubiquitous in nature,
e.g, distant cortical regions without apparent direct neural links in
the brain exhibit coherent behaviors [16]. Unlike the emergence
of the classical synchronization, for which strong connections are
required [17]–[19], remote synchronization is more associated with
morphological symmetry. For example, nodes located remotely in a
network might be able to swap their positions without changing the
functioning of the overall system [20], [21]. In this letter, we study
remote synchronization of oscillators coupled by a star network with
two peripheral nodes. Despite the simple structure, this network has
been shown to render zero-lag synchronization of remotely separated
neuronal populations [22], coupled semiconductor lasers [23], or
chaotic electronic circuits [24], even in the presence of considerable
delays. The central node in this network is believed to play an
essential role in dynamically relaying or mediating the dynamics
of the peripheral ones. Some recent studies show that the remote
synchronization can be enhanced if some parameter mismatch or
heterogeneity is introduced to the central element [25], [26]. We seek
to analytically study this interesting experimental finding.

Towards this end, we employ the Kuramoto-Sakaguchi model to
describe the dynamics of the oscillators [27], wherein the phase shift
term is often used to model small time delays such as synaptic
connection delays [28], [29]. We first show that a large phase shift
can destabilize remote synchronization. We then detune the natural
frequency of the central oscillator to introduce some parameter het-
erogeneity. Modeling the problem into a slow-fast system and using
our obtained criteria for partial stability, we rigorously prove that this
natural frequency detuning strengthens the remote synchronization by
making it more robust against phase shifts. Notice that the remote
synchronization emerges in the absence of frequency synchronization
(or phase locking) of the network, in sharp contrast to the classical
synchronization of coupled Kuramoto oscillators (see [30] for a
survey). It is the first-known attempt to analytical study phase-
unlocked remote synchronization.

The rest of the letter is structured as follows. Section II introduces
the model of a slow-fast system and formulates the problem. The
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main results are provided in Section III. As an application, remote
synchronization of Kuramoto-Sakaguchi oscillators is studied in
Section IV. Concluding remarks appear in Section V.

Notations: Let R denote the set of real numbers. For any δ > 0,
let Bδ := {x ∈ Rn : ‖x‖ < δ}. Given two vectors x ∈ Rn and
y ∈ Rm, denote col(x, y) = (x>, y>)>. Denote the unit circle
by S1, and a point on it is called a phase since the point can be
used to indicate the phase angle of an oscillator. For any two phases
θ1, θ2 ∈ S1, the geodesic distance between them is the minimum of
the lengths of the counter-clockwise and clockwise arcs connecting
them, which is denoted by |θ1−θ2|S; the geodesic difference between
θ1 and θ2 is 〈θ1, θ2〉 := θ1− θ2 + 2nπ, where n is the integer such
that |θ1 − θ2 + 2nπ| = |θ1 − θ2|S. Note that 〈θ1, θ2〉 ∈ S1 for any
θ1, θ2 ∈ S1. Let Tn := S1 × · · · × S1 denote the n-torus. Given
γ, ψ ∈ Tn, ‖γ − ψ‖S :=

√
|γ1 − ψ1|2S + · · ·+ |γn − ψn|2S.

II. PROBLEM FORMULATION

Consider a class of slow-fast systems described by

ẋ = f1(x, y, z), ẏ = f2(x, y, z), εż = f3(x, y, z), (1)

where x ∈ Rn, y ∈ Rm, z ∈ R, and ε > 0 is a small constant. That
is, x, y are the states of slow dynamics, and z of the fast dynamics.
All the maps, f1 : Rn+m+1 → Rn, f2 : Rn+m+1 → Rm, f3 :
Rn+m+1 → R, are continuously differentiable, and T -periodic in
z, i.e., fi(x, y, z + T ) = fi(x, y, z) for all i = 1, 2, 3. We further
assume: a) the fi’s are such that the solution to the system (1) with
any initial condition, (x0, y0, z0), exists for all t ≥ 0; b) x = 0 is a
partial equilibrium point of the system (1), i.e., f1(0, y, z) = 0 for
any y ∈ Rm and z ∈ R; and c) f2(0, y, z) = 0 for any y and z.

We are interested in studying uniform partial exponential stability
of the system (1). Let us first provide the definition.

Definition 1 ( [2, Chap. 4]): A partial equilibrium point x = 0
of the system (1) is exponentially x-stable uniformly in y and z if
there exist c1, c2, δ > 0 such that ‖x0‖ < δ implies that ‖x(t)‖ ≤
c1‖x0‖e−c2t for any t ≥ 0 and (y0, z0) ∈ Rm × R.

In this note, when we refer to this definition, we also say that x = 0
of the system (1) is partially exponentially stable or the system (1)
is partially exponentially stable with respect to x. Some noticeable
efforts to study partial stability of nonlinear systems are found in
[1], [2, Chap. 4], [8], where Lyapunov criteria have been established.
However, it is not always easy to verify partial stability by using
those criteria. As a motivating example, we consider the following
academic but suggestive model.

Example 1: Consider a nonlinear system whose dynamics are
described by ẋ = −x − 0.2x sin y − 2x cos z, ẏ = 2x cos y +
x sin z, εż = 3 − sinx + cos y. As it will be shown later, for suffi-
ciently small ε > 0, it is possible to prove that the partial equilibrium
point x = 0 is exponentially stable uniformly in y and z. However, it
is difficult to construct a Lyapunov function using the existing criteria.
For example, one might choose V = x2 as a Lyapunov function
candidate. Its time derivative V̇ = −2(1 + 0.2 sin y+ 2 cos z)x2 can
be positive for some y and z, while it is required by [2, Theorem 1,
Chap. 4] to be negative for any x 6= 0, y, and z in order to show the
partial exponential stability. 4

Motivated by the above example, in the next section we aim at
further developing Lyapunov theory for partial stability analysis of
slow-fast systems.

III. PARTIAL STABILITY OF SLOW-FAST DYNAMICS

In this section, our goal is to provide a new Lyapunov criterion
for partial stability of the system (1). First, we construct reduced
dynamics for it. Under some practically reasonable assumptions, the

partial stability of the reduced system and that of the original (1)
are shown to be equivalent. That is, analysis reduces to the study of
partial stability of the reduced dynamics. Second, we will develop a
new criterion for partial stability of the reduced system via averaging.
This new criterion can be then used to deduce the partial stability of
the original system (1).

A. Reduced Dynamics
In this subsection, we construct a reduced dynamics. We make the

following assumption first.
Assumption 1: We assume that

f3(x, y, z) ≥ ϑ, ∀x ∈ Rn, y ∈ Rm, z ∈ R, (2)

or f3(x, y, z) ≤ −ϑ, where ϑ > 0.
Note that we only consider f3 ≥ ϑ in this letter since the other

case f3 ≤ −ϑ is essentially the same. Assumption 1 is naturally
satisfied for some practical problems such as vibration suppression
of rotating machinery where f3 is the angular velocity [31], and spin
stabilization of spacecrafts where f3 describes the spin rate [32].

Assumption 1 implies that t 7→ z(t) can be interpreted as a change
of time (recall that z is a scalar). That is, t 7→ z(t) is a global
diffeomorphism1 from [0,∞) to [0,∞). In the new time axis z(t),
the slow-fast system becomes

dx(t)

dz(t)
=
dx(t)

dt

dt

dz(t)
= ε

f1(x(t), y(t), z(t))

f3(x(t), y(t), z(t))
,

dy(t)

dz(t)
=
dy(t)

dt

dt

dz(t)
= ε

f2(x(t), y(t), z(t))

f3(x(t), y(t), z(t))
.

This system can be viewed as a time-varying system with the
new time variable z(t). Note that, since t 7→ z(t) is a global
diffeomorphism, the partial stability with respect to x of the system
in this new time axis is equivalent to that of the system (1) in the
original time axis. Therefore, hereafter we focus on the system in the
new time axis. For the sake of simplicity of description, this system
is rewritten into

dx

dz
= εh1(x, y, z),

dy

dz
= εh2(x, y, z), (3)

where h1 = f1/f3, and h2 = f2/f3. From the properties of f1, f2,
and f3, it holds that h1(0, y, z) = 0 and h2(0, y, z) = 0 for any
y ∈ Rm and z ∈ R, and both h1 and h2 are T -periodic in z. Also,
the solution to the system (3) exists for all z ≥ z0.

B. Partial Stability Conditions via Averaging
In order to study partial stability with respect to x of the con-

structed periodic slow dynamics (3), we resort to a periodic averaging
technique. Different from existing results, we partially average the
system (3), and the (partially) averaged system is given by

dw

dz
= εhav(w, v),

dv

dz
= εh2(w, v, z), (4)

where the function hav is defined by

hav(w, v) =
1

T

∫ T

0
h1(w, v, τ)dτ, (5)

where hav(0, v) = 0 for any v ∈ Rm as h1(0, v, z) = 0. Denote the
initial condition of (4) by (w0, v0, z0).

The following theorem (with proof deferred to later subsections)
shows how the averaged system (4) can be used to infer the partial
stability of the system (3), and, in turn, of the original system (1).

1This follows from the earlier assumption that for any initial condition the
solution to the system (1) exists for all t ≥ 0 (which implies f3 is upper
bounded).
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Theorem 1: Suppose that w = 0 of the averaged system (4) is
partially exponentially stable uniformly in v, i.e., there exist δ, k, λ >
0 such that for any (v0, z0) ∈ Rm × R and w0 ∈ Bδ , ‖w(z)‖ ≤
k‖w0‖e−λ(z−z0) for all z ≥ z0. Assume that there are L1, L2 > 0
such that for any x ∈ Bδ, y ∈ Rm, z ∈ R, the functions h1 and h2
in (3) satisfy∥∥∥∥∂h1∂x

(x, y, z)

∥∥∥∥ ≤ L1,

∥∥∥∥∂h2∂x
(x, y, z)

∥∥∥∥ ≤ L2, (6)

where x = col(x, y). Then, there exists ε1 > 0 such that, for any
ε < ε1, the partial equilibrium point x = 0 of the system (3) is
exponentially stable uniformly in y. Consequently, x = 0 of the
system (1) is also exponentially stable uniformly in y and z. 4

Averaging methods have been used to study (full-state) exponential
stability [14], asymptotic stability [15], and practical asymptotic
stability [33], but not for partial stability. As clarified by Theorem
1, for partial exponential stability analysis, not all states need to be
averaged. This is the core distinguishing feature of partial stability
analysis. Notice that Theorem 1 states that if a ball of initial states for
the averaged system associated with the partial exponential stability
exists, then some corresponding ball exists for the original system,
but the two balls can have different radii.

We illustrate the utility of Theorem 1 by revisiting Example 1, and
see how the obtained results can be applied.

Continuation of Example 1: As 3 − sinx + cos y ≥ 1 for any
x, y, Assumption 1 holds. Then, for T = 2π one can construct the
averaged system (4) of the system in Example 1 as

dw

dz
= ε
−w − 0.2w sin v

3− sinw + cos v
,

dv

dz
= ε

2w cos v

3− sinw + cos v
.

Choose a Lyapunov function candidate V (w, v, z) = w2. Then, it
holds that dV

dz = −2ε · 1+0.2 sin v
3−sinw+cos vw

2 ≤ − 8
15εw

2. According
to [2, Theorem 1], w = 0 of the averaged system is partially
exponentially stable. From Theorem 1, one can conclude that x = 0
of the original system in Example 1 is partially exponentially stable
if ε > 0 is sufficiently small. 4

By using averaging techniques, Theorem 1 provides a new way to
study partially stability of slow-fast systems for which the existing
criteria are difficult to apply. Next, we provide a corollary of this
theorem for a simpler version of the system (1).

Consider the following system with respect to x,

ẋ = f1(x, z), εż = f3(x, z), (7)

where f1 and f3 satisfy all the assumptions for the system (1), but
without the variable y. To study partial stability with respect to x,
we apply the change of time-axis, t→ z. Then, we have

dx

dz
= εh1(x, z), (8)

where h1 := f1/f3. Next, compute the averaged system of the fast
subsystem

dw

dz
= εĥav(w), (9)

where the function ĥav is defined by ĥav(w) = 1
T

∫ T
0 h1(w, τ)dτ .

As expected, if the averaged system (9) is exponentially stable, then
the partial stability of (7) is ensured as long as ε > 0 is sufficiently
small; this is formally stated in the following corollary.

Corollary 1: Suppose that w = 0 is exponentially stable for the
averaged system (9). Assume that there is L > 0 such that for any
x ∈ Bδ, z ∈ R the function h1 in (8) satisfies∥∥∥∥∂h1∂x

(x, z)

∥∥∥∥ ≤ L. (10)

Then, there exists ε1 > 0 such that, for any ε < ε1, the partial
equilibrium x = 0 of the system (7) is partially exponentially stable
uniformly in z. 4

If f3(x, z) = 1 for all x ∈ Rn and z ∈ R, this corollary reduces
to the criteria in [13, Chap. 10] and [14] for exponential stability of
fast time-varying systems since z and t are the same.

In the next section, we apply our results on partial exponential
stability to the study of remote synchronization of coupled oscillators.
Before that, we construct the proof of Theorem 1 in the following
subsections. As typically done in averaging methods, the system (3)
can be taken as a perturbed system of (4), where the perturbation
decreases as ε does. We construct a Lyapunov function for (4), and
use this Lyapunov function to show that the system (3) is also partially
exponentially stable with the aid of perturbation theory. Towards this
end, we next provide a converse Lyapunov result and a perturbation
inequality for partially exponentially stable systems.

C. A Converse Lyapunov Result
This subsection is dedicated to constructing a Lyapunov function.

As a generalized form of (4), we consider the following time-varying
systems

dw

dz
= ϕ1(w, v, z),

dv

dz
= ϕ2(w, v, z), (11)

where w ∈ Rn, v ∈ Rm, z ∈ R, and the functions, ϕ1 : Rn+m+1 →
Rn, ϕ2 : Rn+m+1 → Rm are continuously differentiable, and
satisfy that ϕ1(0, v, z) = 0 and ϕ2(0, v, z) = 0 for any v ∈ Rm.
We further assume that for any z0 the solution to the system (11)
exists for all z ≥ z0.

Now, we provide a converse result that is directly applicable to the
averaged system (4).

Proposition 1: Suppose that w = 0 is partially exponentially
stable uniformly in v for the system (11), i.e., there exists δ > 0
such that for any z0 ∈ R and w(0) ∈ Bδ , there are k, λ > 0 such
that ‖w(z)‖ ≤ k‖w(0)‖e−λ(z−z0) for all z ≥ z0. Also, assume that
there are L1, L2 > 0 such that∥∥∥∥∂ϕ1

∂w
(w, v, z)

∥∥∥∥ ≤ L1,

∥∥∥∥∂ϕ2

∂w
(w, v, z)

∥∥∥∥ ≤ L2, (12)

for any w ∈ Bδ, v ∈ Rm, z ∈ R, where w = col(w, v). Then,
there exists a function V : Bδ × Rm × R → R that satisfies the
following inequalities: 1) c1‖w‖2 ≤ V (w, v, z) ≤ c2‖w‖2, 2) ∂V∂z +
∂V
∂wϕ1(w, v, z) + ∂V

∂v ϕ2(w, v, z) ≤ −c3‖w‖2, 3)
∥∥∥∂V∂w ∥∥∥ ≤ c4‖w‖,

and 4)
∥∥∥∂V∂v ∥∥∥ ≤ c5‖w‖ for some constants c1, c2, c3, c4, c5 > 0. 4

If we let A := {(x, y) ∈ Rn × Rm : x = 0}, Proposition 1 can
be equivalently taken as a converse result for exponential stability of
the unbounded closed set A. Studies of converse Lyapunov theorems
for stability of sets date back to decades ago [34], [35, Chap. V].
Those early results have later been developed for stability of compact
sets and general closed sets [36], [37] (see also a comprehensive
survey [38]). The proof of the proposition is similar to those converse
theorems in the literature, and is thus omitted. For a complete proof,
we refer to the extended arXiv version of this letter [39].

D. Analysis of Perturbed Systems
In this subsection, following some classical results, we provide

a perturbation inequality for the following perturbed version of the
system (11):

dwp
dz

= ϕ1(wp, vp, z) + g1(wp, vp, z), (13a)

dvp
dz

= ϕ2(wp, vp, z) + g2(wp, vp, z), (13b)
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where g1 : Rn+m+1 → Rn and g2 : Rn+m+1 → Rm are piecewise
continuous in z and locally Lipschitz in (wp, vp). In particular, we
assume that the perturbation terms satisfy the bounds

‖g1‖ ≤ γ1(z)‖wp‖+ ψ1(z), ‖g2‖ ≤ γ2(z)‖wp‖+ ψ2(z), (14)

where γ1, γ2 : R→ R are nonnegative and continuous for all z ∈ R,
and ψ1, ψ2 : R → R are nonnegative, continuous and bounded for
all z ∈ R. Notice that the bounds on the right are independent of vp.

The following proposition presents some results on the behavior
of the perturbed system (13) when the nominal system (11) has a
partially exponentially stable equilibrium wp = 0.

Proposition 2: Suppose that the nominal system (11) satisfies all
the assumptions in Proposition 1. Also, assume that the perturbation
terms g1(wp, vp, z) and g2(wp, vp, z) are respectively bounded as in
(14) for γ1, γ2 and ψ1, ψ2 satisfying

c4

∫ z

z0

γ1(τ)dτ + c5

∫ z

z0

γ2(τ)dτ ≤ κ(z − z0) + η, (15)

where 0 ≤ κ < c1c3/c2, η ≥ 0, and c4ψ1(z) + c5ψ2(z) <
2c1k1δ/k2 for all z ≥ z0 with k1 = c3/2c2 − κ/2c1 and
k2 = eη/2c1 . Then for all z ≥ z0, the solution to the per-
turbed (13) satisfies that ‖wp(z)‖ ≤ k2

√
c2
c1
‖wp(z0)‖e−k1(z−z0)+

k2
2c1

∫ z
z0
e−k1(z−τ)ψ(τ)dτ for any initial time z0 ∈ R and any

initial state wp(z0) ∈ Rn and vp(z0) ∈ Rm such that ‖wp(z0)‖ <
δ
k2

√
c1
c2

. 4
If the perturbations g1 and g2 in (13) are vanishing, we obtain the

next Corollary, which will be used to prove Theorem 1.
Corollary 2: Suppose that the nominal system (11) satisfies all the

assumptions in Proposition 2. In addition, assume that ψ1(·) = 0 and
ψ2(·) = 0. Then, wp = 0 of the system (13) is partially exponentially
stable uniformly in vp. Moreover, the solution to (13) satisfies that
for all z ≥ z0 it holds that ‖wp(z)‖ ≤ k2

√
c2
c1
‖wp(z0)‖e−k1(z−z0)

for any initial time z0 ∈ R and any initial condition wp(z0) ∈ Bδ
and vp(z0) ∈ Rm satisfying ‖wp(z0)‖ < δ

k2

√
c1
c2

.
Some perturbation theorems for full-state, but not partial, stability

analysis can be found in [13]. Our results are slightly more general
since Proposition 2 and Corollary 2, respectively, reduce to Lemma
9.4 and Corollary 9.1 in [13] if vp ∈ R, ϕ2 = 1, and g2 = 0. The
proofs are similar to those in [13], and are thus omitted.

E. Proof of Theorem 1

Now, we are ready to provide the proof of Theorem 1.
Proof: First, we introduce the following change of variables to

the original slow system (3):

x = wp + εu(wp, vp, z), y = vp, (16)

where

u(wp, vp, z) =

∫ z

0
∆(wp, vp, τ)dτ, (17)

with ∆(wp, vp, z) = h1(wp, vp, z) − hav(wp, vp). From the def-
inition of hav in (5), it holds that

∫ T
0 ∆(wp, vp, τ)dτ = 0. After

substituting (16) into (3), we obtain

dx

dz
=
dwp
dz

+ ε
∂u

∂z
+ ε

∂u

∂wp

dwp
dz

+ ε
∂u

∂vp

dvp
dz

,
dy

dz
=
dvp
dz

.

Substituting (3) and (16) into the above equations yields

P (ε)

[
dwp
dz
dvp
dz

]
=
[
εh1(wp + εu, vp, z)− εh1

(
wp, vp, z

)
+ εhav

(
wp, vp

)
εh2(wp + εu, vp, z)

]
,

(18)

where P =

[
I + ε ∂u

∂wp
ε ∂u∂y

0 I

]
. We then show that the obtained

dynamics (18) can be viewed as a perturbation of the averaged
system (4). Therefore, Corollary 2 can be used to show the partial
stability of the obtained dynamics from that of the averaged system.
Our goal is to show that the partial stability of the obtained dynam-
ics (18) implies that of the original slow system (3).

Let us represent the obtained dynamics (18) by a perturbation of the
averaged system (4). For k = 1, 2, let hik be the ith component of hk.
From the mean value theorem, for each k = 1, 2, there exists λik =
λik(wp, vp, z, ε) > 0 such that hik(wp+εu, vp, z)−hik (wp, vp, z) =
∂hik
∂wp

(wp + ελiku, vp, z) · εu. Let us denote

H1 =

[
∂h11
∂wp

(wp + ελ11u, vp, z), . . . ,
∂hn1
∂wp

(wp + ελn1u, vp, z)

]>
,

H2 =

[
∂h12
∂wp

(wp + ελ12u, vp, z), . . . ,
∂hn2
∂wp

(wp + ελn2u, vp, z)

]>
.

Then we have

h1(wp + εu, vp, z)− h1 (wp, vp, z) = H1 · εu, (19)

h2(wp + εu, vp, z)− h2 (wp, vp, z) = H2 · εu, (20)

where both H1 and H2 are bounded since from (6) each ∂hik/∂w
is. Due to the boundedness of ‖∂u/∂z‖, ‖∂u/∂wp‖, and ‖∂u/∂vp‖
from Proposition 3 in Appendix VI-A, it is clear that the matrix
P (ε) is nonsingular for sufficiently small ε > 0, and its inverse can
be described as P−1(ε) = I+O(ε) with some O(ε). Applying this
fact together with the equalities (19) and (20) to (18), one can show
that there are bounded H ′1(wp, vp, z, εu) and H ′2(wp, vp, z, εu) such
that

dwp
dz

= εhav (wp, vp) + ε2H ′1(wp, vp, z, εu)u, (21a)

dvp
dz

= εh2(wp, vp, z) + ε2H ′2(wp, vp, z, εu)u. (21b)

This is a perturbation of the averaged system (4).
Next, we apply Corollary 2 to show that the partial

exponential stability of the averaged system (4) implies that of its
perturbation (21) for sufficiently small ε > 0. From the definition of
hav, we have

∥∥∥∂hav∂wp
(wp, vp)

∥∥∥ =
∥∥∥ 1
T

∫ T
0

∂h1
∂wp

(wp, vp, τ)dτ
∥∥∥ ≤ L1

for any wp ∈ Bδ, v ∈ Rm, where wp = col(wp, vp). By
the assumptions in (6), ‖∂h2/∂wp‖ ≤ L2. Therefore, both
inequalities in (12) are satisfied. Since the system (4) is assumed
to be partially exponentially stable, all the assumptions in
Proposition 2 are satisfied. To apply Corollary 2, it remains
to show that the perturbation terms are bounded linearly
in ‖wp‖. Let b1 > 0 and b2 > 0 be constants such that
‖H ′1(w, v, z, εu)‖ ≤ b1 and ‖H ′2(wp, vp, z, εu)‖ ≤ b2. From
(28) in Appendix VI-A, it holds that ‖u(wp, vp, s)‖ ≤ 2TL1‖w‖,
and then the perturbation terms satisfy ‖ε2H ′1(wp, vp, z, εu)u‖ ≤
2ε2b1TL1‖wp‖, ‖ε2H ′2(wp, vp, z, εu)u‖ ≤ 2ε2b2TL1‖wp‖.
Moreover, for sufficiently small ε1 > 0, any ε < ε1 ensures
the inequalities in Corollary 2 is satisfied. Therefore, Corollary
2 implies that wp = 0 is partially exponentially stable for the
perturbed system (21), or, equivalently, the system (18). In other
words, there are δ′, k′, λ′ > 0 such that wp(z0) ∈ Bδ′ implies
‖wp(z)‖ ≤ k′‖wp(z0)‖e−λ

′(z−z0), for all z ≥ z0.
Finally, we show that the partial exponential stability of the

system (18) implies that of the slow dynamics (3). From (16) and
(28) in the Appendix, one obtains |1−2εTL1|·‖wp(z)‖ ≤ ‖x(z)‖ ≤
|1 + 2εTL1| · ‖wp(z)‖ for all z ≥ z0. Then, it follows that

‖x(z)‖ ≤ k′ |1 + 2εTL1|
|1− 2εTL1|

‖x(z0)‖e−λ
′(z−z0), ∀z ≥ z0,
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proving the partial exponential stability of x = 0 for the system (3)
for sufficiently small ε > 0. Finally, one can conclude that x = 0
is also partially exponentially stable for the original slow-fast system
(1) uniformly in y and z under Asssumption 1.

IV. REMOTE SYNCHRONIZATION IN A NETWORK OF
KURAMOTO OSCILLATORS

In this section, we apply the results on partial stability to the study
of remote synchronization in a network motif depicted in Fig. 1.

A. Problem Statements and Preliminary
The dynamics of the oscillators are described by

θ̇i = ω +Ai sin(θ0 − θi − α), i = 1, 2; (22a)

θ̇0 = ω +

2∑
j=1

Aj sin(θj − θ0 − α) + u, (22b)

where θi ∈ S1 is the phase of the ith oscillator; ω > 0 is the uniform
natural frequency of each oscillator; Ai > 0 is the coupling strength
between the central node 0 and the peripheral node i; α is the phase
shift, and we assume α ∈ (0, π/2) as generally done in the literature
(e.g., [20]); and u ≥ 0 is a constant representing the natural frequency
detuning (for the case u < 0, one can obtain virtually identical results
to those obtained below). Note that, the phase shift α is often used
to model delays arising in synaptic connections in neural networks
[28].

Let θ = (θ0, θ1, θ2)> ∈ T3. To study the remote synchronization
in our considered network, we define the remote synchronization
manifold as follows.

Definition 2: The remote synchronization manifold is defined by
M :=

{
θ ∈ T3 : θ1 = θ2

}
.

A solution θ(t) to (22) is said to be remotely synchronized if it
satisfies θ(t) ∈ M for all t ≥ 0. The simulation results in [20]
has shown that when u = 0 the remote synchronization is stable for
small α, but becomes unstable if α is large. However, an analytical
characterization of the threshold for α is still missing. The first and
secondary goal in the section is to identify this threshold as a measure
of robustness of the remote synchronization against phase shifts or
time delays. More interestingly, it is unclear how the introduction
of a natural frequency detuning u > 0 affects this robustness. The
second and main goal is then to study this problem.

In fact, remote synchronization can be categorized into two dif-
ferent types, i.e., phase-locked and phase-unlocked remote synchro-
nization, depending on whether phase locking occurs or not. Phase
locking is a phenomenon wherein every pairwise phase difference
is a constant, i.e., θi − θj = cij for all i, j (the special case
wherein cij = 0 is called phase synchronization). Phase locking
is also called frequency synchronization because it is equivalent to
the case of all oscillators’ frequencies being synchronized. In our
considered case, for the phase-locked remote synchronization, it holds
that θ̇0 = θ̇1 = θ̇2, while for the phase-unlocked case, θ̇0 is distinct
from θ̇1 = θ̇2 6= θ̇0.

As shown in [20], network symmetries are critical to the emergence
of remote synchronization. In our considered network in Fig. 1, we
say that the oscillators 1 and 2 are symmetric if A1 = A2. In what
follows, we assume that the oscillators 1 and 2 are symmetric2.

2This assumption requires the two coupling strengths, A1 and A2, to
be strictly identical. This is somewhat demanding since it is not easy to
be fulfilled in practical situations. Numerical studies show that the phase
difference between the peripheral oscillators remains bounded if A1 and A2

are only approximately the same, although exact phase synchronization cannot
take place. It is quite interesting to study this problem in the future, though
we only consider A1 = A2 in this letter.

01 2

Fig. 1. A simple network motif: central node 0 and peripherals 1 and 2.

Assumption 2 (Symmetric coupling): We assume that the coupling
strengths satisfy A1 = A2 = A.

We make this assumption to ensure that both phase-locked and
phase-unlock remote synchronization can emerge in (22). It is note-
worthy that this assumption is necessary for phase-unlocked remote
synchronization, which can be seen by the following argument by
contradiction. Suppose that if A1 6= A2, then phase-unlocked remote
synchronization happens. It follows from (22a) that θ̇1 − θ̇2 =
A1 sin(θ0 − θ1 − α) − A2 sin(θ0 − θ1 − α) = 0. Solving this
equation yields θ0 − θ1 = nπ + α, and subsequently, it holds that
θ̇0 = θ̇1 = θ̇2, which implies a contradiction.

To study the stability of the remote synchronization, we study the
stability of the corresponding manifolds. Given a manifold C ∈ Tn,
define a δ-neighborhood of C by Uδ(C) = {θ ∈ Tn : dist(θ, C) <
δ}, where dist(θ, C) is the minimum distance from θ to a point on C,
that is, dist(θ, C) = infy∈C ‖θ − y‖S. Let us define the exponential
stability of manifolds.

Definition 3: For the system (22), a manifold C ∈ T3 is said to
be exponentially stable along the system (22) if there is δ > 0 such
that for any initial phase θ(0) ∈ T3 satisfying θ(0) ∈ Uδ(C) it holds
that for all t ≥ 0, dist(θ(t), C) = k · dist(θ(0), C) · e−λt. for some
k > 0 and λ > 0.

B. Robustness of Remote synchronization when u = 0

Let us first define the following phase-locked remote synchro-
nization manifolds: M1 := {θ ∈ M : θ0 − θ1 = c(α)}
and M′1 := {θ ∈ M : θ0 − θ1 = c′(α)}, where c(α) :=

− arctan
(

sinα
3 cosα

)
, c′(α) := π + c(α). The main result in this

subsection is presented as follows (the proof is in Appendix VI-B).
Theorem 2: Suppose that Assumption 2 is satisfied, and u = 0.

For any A > 0, the following statements hold:
1) if α < arctan

(√
3
)
, there exists a unique exponentially stable

phase-locked remote synchronization manifold, that is M1;
2) if α > arctan

(√
3
)
, there does not exist an exponentially

stable phase-locked remote synchronization manifold. 4
This theorem captures the robustness of the phase-locked remote

synchronization against phase shifts (quantified by the threshold
arctan

(√
3
)
). The phase-locked remote synchronization is exponen-

tially stable for a range of α, but becomes unstable if α is greater than
the threshold (note that a bifurcation occurs when α = arctan

√
3,

but the problem of whether remote synchronization is stable remains
open). We further put forth that stable remote synchronization can
only appear in the form of phase locking if u = 0. This is because
for any α ∈ (0, π/2), the solution θ(t) to (22) converges to M1 for
any initial condition θ(0) ∈M−(M1∪M′1), which implies phase-
unlocked remote synchronization manifold cannot be stable (see a
brief analysis at the end of Appendix VI-B).

C. Robustness Improvement by the Detuning u > 0

In this subsection, we detune the natural frequency of the central
oscillator (i.e., let u > 0) and show that a sufficiently large u actually
stabilizes the remote synchronization even for α larger than the
threshold in Theorem 2, making the remote synchronization much
more robust. The main result of this section is presented in the
following theorem.

Theorem 3: Suppose that Assumption 2 is satisfied. There is a
positive constant u1 > 3A such that for any u satisfying u > u1,
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the remote synchronization manifoldM is exponentially stable along
the system (22) for any phase shift α ∈ (0, π/2). 4

Notice that u > u1 > 3A in this theorem implies that a phase-
locked solution to (22) does not exist. This is because phase locking
requires ẋ1 = ẋ2 = 0, i.e., u+

∑2
j=1A sin(−xj −α)−A sin(xi−

α) = 0 for i = 1, 2, but these equations do not have a solu-
tion. Consequently, the manifold M corresponds to phase-unlocked
remote synchronization only. Note that given α > arctan

√
3,

there exists 0 < u < 3A, whose value depends on α, such that
stable phase-locked remote synchronization may occur. However,
this case is not of concern to us since we are more interested in
providing a u that ensures the stability of the remote synchronization
for any α. Particularly, we have shown that there exists a natural
frequency detuning u > 3A such that the remote synchronization is
exponentially stable for any α ∈ (0, π/2), although phase locking
becomes impossible. Most of the existing results on synchronization
of Kuramoto (or generalized-Kuramoto) oscillators (e.g., [19], [40],
and a survey [30]) are built on phase locking. When the phases are
unlocked, the analysis is more challenging. It is noteworthy that
Theorem 3 is the first-known result that has analytically studied
phase-unlocked remote synchronization.

We next prove Theorem 3 using the results on partial stability.

Proof of Theorem 3: First, we define some new variables, and
analyze the system defined on them. Specifically, let φ and z be

φ =
θ1 − θ2

2
, z = θ0 −

θ1 + θ2
2

+ η. (23)

Here η ∈ S1 is the phase angle such that

cos η =
3 cosα

D
, sin η =

sinα

D
, (24)

where D =
√

9 cos2 α+ sin2 α. In fact, it can be observed from α ∈
(0, π2 ) that η ∈ (0, π2 ). In addition, η → 0 as α→ 0 and η → π

2 as
α→ π

2 .
According to Proposition 4 in the Appendix VI-C, the time

derivatives of φ and z are respectively given by

φ̇ = −A sinφ cos(z − α− η), (25a)

ż = u−DA cosφ sin z. (25b)

Notice that 3 ≥ D =
√

8 cos2 α+ 1. This and u > 3A by
assumption imply u − DA cosφ sin z > u − DA =: ϑ > 0 for
any φ and z, i.e., Assumption 1 holds for (25). Following similar
lines as Step 3 in the proof of Theorem 2, one can reason that the
remote synchronization manifold M is exponentially stable if one
can prove that the system (25) is partially exponentially stable with
respect to φ.

Since u > 3A by assumption, u−DA cosφ sin z > 0 for any φ
and z. Then,

dφ

dz
= −A sinφ cos(z − α− η)

u−DA cosφ sin z
:= f(φ, z). (26)

To show the partial exponential stability of (25), it is sufficient to
prove the exponential stability of (26) as argued in subsection II-A.
We then associate the system (26) with the averaged system

φ̇ = εfav(φ), (27)

with ε = 1
u and

fav(φ) =

∫ 2π

0
f(φ, z)dz = −A sinφ

∫ 2π

0

cos(z − α− η)

1− 1
uDA cosφ sin z

dz︸ ︷︷ ︸
g(φ)

,

where the fact that 2π is the period has been used.

From (33) in Appendix VI-D, it holds with a := DA cosφ that

g(φ) =
2uπ sin(α+ η)

a
√
u2 − a2

(
u−

√
u2 − a2

)
≥ 2π sin(α+ η)

DA

(
u−

√
u2 − a2

)
,

where
√
u2 − a2 ≤ u and a = DA cosφ ≤ DA are used. Consider

a constant ε ∈ [0, π/2). For any φ satisfying |φ| ≤ ε, it holds that
DA cos ε ≤ DA cosφ = a. This implies

g(φ) ≥ 2π sin(α+ η)

DA

(
u−

√
u2 − (DA)2 cos2 ε

)
:= C.

As mentioned, α, η ∈ (0, π2 ), which means α + η ∈ (0, π) and
consequently sin(α+ η) > 0. Therefore, C is a positive constant.

In summary, it follows that φ̇ ≤ −εCA sinφ for any φ satisfying
|φ| ≤ ε. The comparison principle and −εCA cos(0) = −εCA < 0
imply the exponential stability of the averaged system at φ = 0.

According to Corollary 1, one can prove that there exists ε1 > 0
such that for any ε < ε1 the system (25) is partially exponentially
stable. Since ε = 1

u , there exists u1 > 3A such that for any u > u1
the system (25) is partially exponentially stable, which implies that
the remote synchronization manifold M is exponentially stable. �

V. CONCLUDING REMARKS

Using periodic averaging methods, we have obtained some criteria
for partial exponential stability of a type of slow-fast nonlinear sys-
tems in this letter. Associating the original system with an averaged
one by averaging over the fast varying variable, we have shown that
the partial exponential stability of the averaged system implies that of
the original one. We have applied our results to the stability analysis
of remote synchronization in a network of Kuramoto oscillators with a
phase shift. In the future, we are interested in developing new criteria
for partial asymptotic stability of nonlinear systems using averaging
techniques. Moreover, it is interesting to study stability of remote
synchronization in more complex networks.

VI. APPENDIX

A. Proposition 3

Proposition 3: Consider the function u(wp, vp, z) defined in (17).
For any wp ∈ Bδ , vp ∈ Rm, and z ∈ R, ‖u(wp, vp, z)‖, ‖∂u/∂wp‖,
and ‖∂u/∂vp‖ are all bounded, and particularly

‖u(wp, vp, z)‖ ≤ 2TL1‖wp‖. (28)
Proof: First, we prove that ‖u(wp, vp, z)‖ is bounded. One

can observe that u(wp, vp, z) is T -periodic in z since ∆(wp, vp, z)
is. For any z ≥ 0, there exists a nonnegative integer N1 and
z′ satisfying 0 ≤ z′ < T such that z = N1T + z′. Then,
from

∫ T
0 ∆(wp, vp, τ)dτ = 0 we have

∫ z
0 ∆(wp, vp, τ)dτ =∫ z′

0 ∆(wp, vp, τ)dτ . Next, the partial derivative of ∆ with respect
to w satisfies∥∥∥∥ ∂∆

∂wp

∥∥∥∥ =

∥∥∥∥∥ ∂h1∂wp
− 1

T

∫ T

0

∂h1
∂wp

(wp, vp, τ)dτ

∥∥∥∥∥ ≤ 2L1,

where the inequalities ‖∂h1/∂wp‖ ≤ ‖[∂h1/∂wp, ∂h1/∂vp]‖ and
(6) have been used. This inequality and ∆(0, vp, z) = 0 in (17) yield
‖u‖ ≤

∫ z′
0 ‖∆(wp, vp, τ) − ∆(0, vp, τ)‖dτ ≤ 2z′L1‖wp‖, where

implies (28). For any wp ∈ Bδ and vp ∈ Rm, z ∈ R, it is clear that
‖u(wp, vp, z)‖ ≤ 2TL1δ.
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B. Analysis of Section IV-B

Proof of Theorem 2: (Step 1) First, we confirm that for any α ∈
(0, π/2), any phase-locked and remotely synchronized solution to
(22) belongs to either M1 or M′1. In other words, M1 or M′1 are
the only two phase-locked remote synchronization manifolds.

A solution (θ0, θ1, θ2) ∈ T3 is phase-locked and remotely syn-
chronized if and only if there exists γ ∈ S1 such that θ0 +γ = θ1 =
θ2. Then, from (22) with A = A1 = A2 and u = 0, the solution
satisfies 2 sin(γ − α) + sin(γ + α) = 0. In fact, only γ = c(α) and
β = c′(α) satisfy this equation in S1.

(Step 2) Next, we study stability of x = c(α)12 by viewing the
system (22) as a system defined on R3 with θi ∈ R3, i = 1, 2, 3.
Then we apply the change of coordinates xi = θ0−θi, i = 1, 2 (and
θ0 = θ0). In the new coordinates, the system with A = A1 = A2

and u = 0 becomes

ẋi =

2∑
j=1

A sin(−xj − α)−A sin(xi − α), i = 1, 2, (29a)

θ̇0 = ω +A
2∑
j=1

sin(xj − α). (29b)

Note that ẋi, i = 1, 2 does not depend on θ0, i.e., the subsys-
tem (29a) is in the closed form. From Step 1, both x = c(α)12 ∈
(−π/2, π/2)2 and x = c′(α)12 ∈ (π/2, 3π/2)2 are equilibria of
this subsystem.

The Jacobian matrix corresponding to this subsystem at x =
(x1, x2)> ∈ R2 is

J(x) = −A
[
cos (x1 + α) + cos (x1 − α) cos (x2 + α)

cos (x1 + α) cos (x2 + α) + cos (x2 − α)

]
.

(30)

If 0 < α < arctan(
√

3), all the eigenvalues of J(c(α)12) are
negative, and thus the subsystem is exponentially stable at c(α).
Moreover, since ẋi, i = 1, 2 is independent from θ0, the system (29)
is exponentially x-stable uniformly in θ0 at c(α)12. In other words,
if 0 < α < arctan(

√
3), there exist c1, c2, δ > 0 such that

‖x(t)− c(α)12‖2 ≤ c1e−c2t‖x(0)− c(α)12‖2 (31)

for any θ0(t) and t > 0, as long as x(0) ∈ R2 satisfies ‖x(0) −
c(α)12‖2 < δ.

(Step 3) Now, we take θ as an element in T3. Since M1 := {θ ∈
T3 : θ0 − θi = c(α), i = 1, 2}, given θ, its distance from M1 is

dist(θ,M1) =
√
|〈θ0, θ1〉 − c(α)|2S + |〈θ0, θ2〉 − c(α)|2S,

where 〈a, b〉 and |a−b|S denote the geodesic difference and distance
(defined at the end of Section I) between angles a, b ∈ S1, respec-
tively. For any θ such that ‖(θ0− θ1, θ0− θ2)>− c(α)12‖2 < π, it
holds that |〈θ0, θi〉 − c(α)|S = |θ0 − θ1 − c(α)| for i = 1, 2, which
yields that

dist(θ,M1) =
√
|θ0 − θ1 − c(α)|2 + |θ0 − θ1 − c(α)|2

= ‖x− c(α)12‖2.

Consequently, from (31) there exists δ < π such that for any θ(0) ∈
T3 satisfying dist(θ(0),M1) < δ, it holds that

dist(θ(t),M1) ≤ c1e−c2t‖x(0)− c(α)12‖2
= c1e

−c2tdist(θ(0),M1),

which proves the exponential stability of the remote synchronization
M1.

(Step 4) Finally, we prove the instability of: (a) the manifold
M1 for α ∈ (arctan

√
3, π/2), and (b) the manifold M′1 for any

α ∈ (0, π/2). We first prove (a). One can calculate that the Jacobian
matrix J(x) has a positive eigenvalue. Let V (x) = ‖x(t)−c(α)12‖2,
which satisfies V (x) > 0 for any x 6= c(α)12. Following the proof
of Theorem 4.7 in [13], one can show that there always exists a set
U ⊂ {x ∈ R2 : ‖x − c(α)12‖ ≤ δ} for arbitrary small δ such that
V̇ (x) > 0 for x ∈ U . Since δ can be chosen such that δ < π, one can
derive that there exists a set U1 ⊂ {θ ∈ T3 : dist(θ,M′1) ≤ δ} such

that ddist(θ,M′1)
dt > 0 for θ ∈ U1, which proves that the manifold

M1 is unstable. Following similar arguments, one can prove (b) since
both eigenvalues of J(x) are positive. �

We next show that if u = 0 the solution θ(t) converges to M1

for any initial condition θ(0) ∈ M − (M1 ∪ M′1). Observe that
θ(0) ∈ M− (M1 ∪M′1) implies: 1) x1(t) = x2(t) for all t ≥ 0
(i.e., invariance of M); 2) xi belongs to either (c(α), c(α) + π) or
(c(α) + π, c(α) + 2π). From (29a), we have ẋi = −2A sin(xi +
α)− A sin(xi − α) for i = 1, 2. It can be computed that ẋi < 0 if
xi ∈ (c(α), c(α) + π), which implies that xi(t) converges to c(α).
Similarly, if xi ∈ (c(α) + π, c(α) + 2π), we have ẋi > 0, which
implies that xi(t) converges to c(α)+2π. Since c(α) and c(α)+2π
are the same point on S1 and the equilibrium x = c(α)12 of (29)
corresponds to M1 of (22), one can deduce that θ(t) converges to
M1 for any θ(0) ∈M− (M1 ∪M′1).

C. Proposition 4

Proposition 4: Let η ∈ S1 be defined in (24), then the time
derivatives of z and φ that are defined in (23) are expressed by
Eq. (25).

Proof: Let z′ = θ0 − θ1+θ2
2 , then θ0 − θ1 = z′ − φ, and

θ0 − θ2 = z′ + φ. From (22), the time derivatives of φ and z′ are

φ̇ =
1

2
A
(
sin(z′ − φ− α)− sin(z′ + φ− α)

)
,

ż′ = u−A(sin(z′ − φ+ α) + sin(z′ + φ+ α))

− 1

2
A
(
sin(z′ − φ− α) + sin(z′ + φ− α)

)
.

Using the trigonometric identity sin a + sin b = 2 sin a+b
2 cos a−b2 ,

we have

φ̇ = −A sinφ cos(z′ − α),

ż′ = u− 2A cosφ sin
(
z′ + α

)
−A cosφ sin(z′ − α)

= u−A cosφ
(
3 cosα sin z′ + sinα cos z′

)
.

Since D =
√

9 cos2 α+ sin2 α, one can observe that 3 cosα sin z′+
sinα cos z′ = D

(
3 cosα
D sin z′ + sinα

D cos z′
)

= D sin(z′ + η)

(recall that η satisfies cos η = 3 cosα/D and sin η = sinα/D).
Note that η → 0 as α→ 0, and η → π

2 as α→ π
2 . Let z = z′ + η,

then ż = −A sinφ cos(z − η − α), φ̇ = u−DA cosφ sin z, which
completes the proof.

D. Computation of the Integral g(φ)

For the simplicity of notation, let β = α + η, and then g(φ) =∫ 2π
0

cos(z−β)
1− 1

ua sin z
dz. Since cos(z − β) = cos z cosβ + sin z sinβ, it

holds that

g(φ) = cosβ

∫ 2π

0

cos z

1− 1
ua sin z

dz︸ ︷︷ ︸
g1(φ)

+ sinβ

∫ 2π

0

sin z

1− 1
ua sin z

dz︸ ︷︷ ︸
g2(φ)

.

For g1(φ), it follows that g1(φ) =
[
−ua ln (u− a sin z)

]2π
0

= 0.
Next, we compute g2(φ). Its integral can be described as us(φ),
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where

s(φ) =
sinφ

u− a sinφ
=

2 sin φ
2 cos φ2

u− 2a sin φ
2 cos φ2

.

According to [41], the indefinite integral of s(φ) is given by∫
s(φ)dφ = −φ

a
− 1

a

2u√
u2 − a2

arctan

(
a− u tan φ

2√
u2 − a2

)
.

It follows that

g2(φ) = lim
φ′→π−

∫ φ′

0
us(φ)dφ+ lim

φ′→π+

∫ 2π

φ+
us(φ)dφ

=− 2uπ

a
− 1

a

2u2√
u2 − a2

(
−π

2
− arctan

a√
u2 − a2

+

)
− 1

a

2u2√
u2 − a2

(
arctan

a√
u2 − a2

− π

2

)
=

2uπ

a
√
u2 − a2

(
u−

√
u2 − a2

)
.

Combining all computations leads to

g(φ) = cosβg1(φ) + sinβg2(φ) = −u sinβ

a

∫ 2π

0
(1− s1(φ))dφ

=
2uπ sinβ

a
√
u2 − a2

(
u−

√
u2 − a2

)
. (33)
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[24] A. Wagemakers, J. M. Buldú, and M. A. Sanjuán, “Isochronous syn-
chronization in mutually coupled chaotic circuits,” Chaos: An Interdis-
ciplinary Journal of Nonlinear Science, vol. 17, no. 2, p. 023128, 2007.

[25] R. Banerjee, D. Ghosh, E. Padmanaban, R. Ramaswamy, L. Pecora, and
S. K. Dana, “Enhancing synchrony in chaotic oscillators by dynamic
relaying,” Physical Review E, vol. 85, no. 2, p. 027201, 2012.

[26] L. V. Gambuzza, M. Frasca, L. Fortuna, and S. Boccaletti, “Inhomo-
geneity induces relay synchronization in complex networks,” Physical
Review E, vol. 93, no. 4, p. 042203, 2016.

[27] H. Sakaguchi and Y. Kuramoto, “A soluble active rotater model showing
phase transitions via mutual entertainment,” Progress of Theoretical
Physics, vol. 76, no. 3, pp. 576–581, 1986.

[28] F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected Neural
Networks. New York, USA: Springer Science & Business Media, 2012.

[29] M. J. Panaggio and D. M. Abrams, “Chimera states: Coexistence of
coherence and incoherence in networks of coupled oscillators,” Nonlin-
earity, vol. 28, no. 3, p. R67, 2015.

[30] F. Dörfler and F. Bullo, “Synchronization in complex networks of phase
oscillators: A survey,” Automatica, vol. 50, no. 6, pp. 1539–1564, 2014.

[31] M. L. Adams, Rotating Machinery Vibration: From Analysis to Trou-
bleshooting. New York, NY, USA: CRC Press, 2009.

[32] J. R. Wertz, Spacecraft Attitude Determination and Control. Amster-
dam, the Netherlands: Reidel, 1978.

[33] A. R. Teel, J. Peuteman, and D. Aeyels, “Semi-global practical asymp-
totic stability and averaging,” Systems & Control Letters, vol. 37, no. 5,
pp. 329–334, 1999.

[34] F. W. Wilson, “Smoothing derivatives of functions and applications,”
Transactions of the American Mathematical Society, vol. 139, pp. 413–
428, 1969.

[35] T. Yoshizawa, Stability theory by Liapunov’s second method. Math.
Soc. Japan, 1966.

[36] Y. Lin, E. D. Sontag, and Y. Wang, “A smooth converse Lyapunov
theorem for robust stability,” SIAM Journal on Control and Optimization,
vol. 34, no. 1, pp. 124–160, 1996.

[37] C. M. Kellett and A. R. Teel, “Weak converse Lyapunov theorems and
control-Lyapunov functions,” SIAM Journal on Control and Optimiza-
tion, vol. 42, no. 6, pp. 1934–1959, 2004.

[38] C. M. Kellett, “Classical converse theorems in Lyapunov’s second
method,” arXiv preprint arXiv:1502.04809, 2015.

[39] Y. Qin, Y. Kawano, B. Anderson, and M. Cao, “Partial exponential
stability analysis of slow-fast systems via periodic averaging,” arXiv
preprint arXiv:1910.07465, 2019.

[40] S.-Y. Ha, D. Ko, and Y. Zhang, “Emergence of phase-locking in the
Kuramoto model for identical oscillators with frustration,” SIAM Journal
on Applied Dynamical Systems, vol. 17, no. 1, pp. 581–625, 2018.

[41] I. N. Bronshtein and K. A. Semendyayev, Handbook of Mathematics.
New York: Springer-Verlag, 1997.


