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Partial Phase Cohesiveness in Networks of Networks of
Kuramoto Oscillators

Yuzhen Qin , Member, IEEE, Yu Kawano , Member, IEEE, Oscar Portoles ,
and Ming Cao , Senior Member, IEEE

Abstract—Partial, instead of complete, synchronization has
been widely observed in various networks, including, in partic-
ular, brain networks. Motivated by data from human brain func-
tional networks, in this article, we analytically show that partial
synchronization can be induced by strong regional connections
in coupled subnetworks of Kuramoto oscillators. To quantify the
required strength of regional connections, we first obtain a criti-
cal value for the algebraic connectivity of the corresponding sub-
network using the incremental two-norm. We then introduce the
concept of the generalized complement graph, and obtain another
condition on the node strength by using the incremental ∞-norm.
Under these two conditions, regions of attraction for partial phase
cohesiveness are estimated in the forms of the incremental two-
and ∞-norms, respectively. Our result based on the incremental
∞-norm is the first known criterion that applies to noncomplete
graphs. Numerical simulations are performed on a two-level net-
work to illustrate our theoretical results; more importantly, we
use real anatomical brain network data to show how our results
may contribute to a better understanding of the interplay between
anatomical structure and empirical patterns of synchrony.

Index Terms—Kuramoto oscillators, networks of networks, par-
tial synchronization.

I. INTRODUCTION

N EURONAL synchronization across cortical regions of human
brain, which has been widely detected through recording and

analyzing brain waves, is believed to facilitate communication among
neuronal ensembles [1], and only closely correlated oscillating neu-
ronal ensembles can exchange information effectively [2]. In healthy
human brain, it is frequently observed that only a part of its cortical
regions are synchronized [3], and such a phenomenon is commonly
referred to as partial phase cohesiveness or partial synchronization.
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In contrast, in pathological brain of a patient, such as an epileptic,
excessive synchronization of neural activities takes place across the
brain [4]. These observations suggest that healthy brain has powerful
regulation mechanisms that are not only able to render synchronization,
but also capable of preventing unnecessary synchronization among
neuronal ensembles. Partly motivated by these experimental studies,
researchers are interested in theoretically studying cluster or partial
synchronization [5]–[8] and chimera states [9], even though analytical
results are much more difficult to obtain, whereas analytical results for
complete synchronization are ample, e.g., [10]–[12].

In our research, our ultimate objective is to identify a possible
underlying mechanism of partial phase cohesiveness in the human
brain. Employing the Kuramoto model [13], which has been widely
used to describe the dynamics of coupled neural ensembles [14], [15],
we analytically study how partial phase cohesiveness can occur in a
network of coupled oscillators. The human brain can be modeled as a
“network of networks” in the sense that adjacent neurons form strongly
connected ensembles, which interact weakly with other ensembles [16],
[17]. As neural ensembles in a cortical region are adjacent in space, it
is thus reasonable to assume that oscillators within a brain region are
coupled through an all-to-all network, forming local communities at the
lower level; at the higher level, the communities are interconnected by
a sparse network facilitated through bundles of neural fibers connecting
regions of the brain. Motivated by these facts, we consider in this article
the networks describing the interaction between Kuramoto oscillators
have this two-level structure.

The main contributions of this article are some new sufficient con-
ditions for partial phase cohesiveness by using Lyapunov functions
utilizing the incremental two-norm and ∞-norm. The incremental two-
norm was first proposed in [12] and [18], in which some conditions for
locally exponentially stable synchronization were obtained. Later on,
it was also employed in the study of noncomplete networks [19], [20].
Inspired by these works, we first employ the incremental two-norm and
obtain a sufficient condition for the algebraic connectivity λ2(L) of the
considered subnetwork, and then estimate the region of attraction and
the ultimate boundedness of phase cohesiveness. This critical value for
λ2(L) depends on the natural frequency heterogeneity of the oscillators
within the subnetwork and the strength of the connections from its
outside to this subnetwork. Since the incremental two-norm depends
greatly on the scale, the obtained critical value and the estimated region
of attraction are both conservative, especially when there are large
numbers of oscillators in the considered subnetwork.

In contrast, the incremental∞-norm is scale independent. It is always
utilized to prove the existence of phase-locking manifolds and their
local stability. Existing conditions are usually expressed implicitly by
a combined measure [21], [22], and the regions of attraction are not
estimated [7], [23]. To the authors’ best knowledge, the best result on
explicit conditions utilizing the incremental ∞-norm is given in [10],
which has only studied uniformly weighted complete networks. To
analyze more general networks in terms of the incremental ∞-norm,

0018-9286 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Groningen. Downloaded on December 06,2021 at 10:52:12 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1851-1370
https://orcid.org/0000-0001-5066-4700
https://orcid.org/0000-0001-8308-3873
https://orcid.org/0000-0001-5472-562X
mailto:yuzh.qin@gmail.com
mailto:kawano@ieee.org
mailto:o.portoles.marin@rug.nl
mailto:ming.cao@ieee.org
https://doi.org/10.1109/TAC.2021.3062005


IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 12, DECEMBER 2021 6101

we introduce the concept of the generalized complement graph in
this article and obtain some novel conditions. Compared to the results
obtained by the incremental two-norm: first, the established sufficient
condition is less conservative if the dissimilarity of natural frequencies
and the strengths of external connections are noticeable; second, more
importantly, the region of attraction that we identified is much larger.
After simplifying the network structure, our results on partial phase co-
hesiveness can reduce to some results on complete phase cohesiveness.
The reduced results are sharper than the best known result obtained by
using incremental two-norm for general connected networks [20, Th.
4.6] (especially in terms of the region of attraction), and are identical
to the sharpest one found in [10] for the case of uniformly weighted
complete networks. The only drawback of our condition is that each
oscillator is required to be connected to a minimum number of other
oscillators. Finally, we perform some simulations using the anatomical
brain network data obtained in [24]; the simulation results show how
our theoretical findings may reveal a possible mechanism that gives
rise to various patterns of synchrony detected in empirical data of
human brain [25]. Our preliminary work was presented in [26], where
only the incremental two-norm was studied. Moreover, we consider a
more general intercommunity coupling structure in this article, without
requiring that every node in one community is connected to all the
nodes in another.

The rest of this article is organized as follows. We introduce the
model on the two-level networks and formulate the problem of partial
phase cohesiveness in Section II. The first result is obtained by using the
incremental two-norm in Section III. Section IV introduces the notion
of generalized complement graphs and derives the main result utilizing
the incremental∞-norm. Some simulations are performed in Section V.

Notations: Let R and R≥0 be the set of real numbers and non-
negative real numbers, respectively. For any positive integer n, let
Tn := {1, 2, . . . , n}, and 1n be the all-one vector. Denote the unit
circle by S1, and a point on it is called a phase since the point can
be used to indicate the phase angle of an oscillator. For any two phases
γ1, γ2 ∈ S1, the geodesic distance between them is the minimum of the
lengths of the counter-clockwise and clockwise arcs connecting them,
which is denoted by |γ1 − γ2|. Note that |γ1 − γ2| ≤ π for any γ1, γ2.
Let Tn := S1 × · · · × S1 denote the n-torus. For any x ∈ R, let �x�
denote the largest integer that is less than or equal to x, and �x	 the
smallest integer that is greater than or equal to x. Let ‖ · ‖p denote the
p-norm for both vectors and matrices, where p ≥ 1 can be infinite.

II. PROBLEM SETUP

We consider a two-level network of Kuramoto oscillators. At the
lower level, there are M communities (M > 1), each of which consists
ofN fully connected Kuramoto oscillators (N > 1); at the higher level,
these communities are interconnected. The dynamics of the oscillators
are described by

θ̇pi = ωpi +Kp

N∑
n=1

sin(θpn − θpi )

+

M∑
q=1

N∑
n=1

ap,qi,n sin(θ
q
n − θpi ), p ∈ TM , i ∈ TN (1)

where θpi ∈ S1 andωpi ≥ 0 represent the phase and natural frequency of
the ith oscillator in the pth community, respectively. Here, the uniform
coupling strength1 of all the edges in the complete graph of the pth com-
munity is denoted by Kp > 0, which we refer to as the intracommunity

1We make this assumption of a uniformly weighted complete graph for each
community for the convenience of notation. Note that this assumption can be

coupling strengths. We label the ith oscillator in the pth community
by pi. The coupling strengths ap,qi,n, p �= q, which we call the inter-
community coupling strengths, satisfy ap,qi,n > 0 if there is a connection
between the oscillatorspi and qn, andap,qi,n = 0otherwise. We define the
intercommunity coupling matrices by Ap,q := [ap,qi,j ]N×N ∈ RN×N ,
and each satisfies Ap,q = Aq,p. The graph G = (V, E ,W ) is used to
describe this two-level network defined in the following way:V = {pi}
is the set of nodes; (pi, qj) ∈ E if there is a connection between
oscillators pi and qj ; W is the weighted adjacency matrix.

The Kuramoto oscillator network model (1) is used in [14] to study
synchronization phenomena of human brain. Along this line of research
and motivated by brain research data, we focus on studying the widely
observed but still not well understood phenomenon for networks of
communities of Kuramoto oscillators, the so-called partial phase cohe-
siveness, in which some but not all of the oscillators have close phases.
To facilitate the discussion of some properties of interest for a subset
of communities in the network, we use Tr = {1, . . . , r}, 1 ≤ r ≤ M ,
to denote a set of chosen communities with the aim to investigate how
phase cohesiveness can occur among these r communities. We then
define the following set to capture the situation when the oscillators in
the communities in Tr reach phase cohesiveness.

Definition 1: Letθ ∈ TMN be a vector composed of the phases of all
MN oscillators in all M communities. Then, given Tr and ϕ ∈ [0, π],
define the partial phase cohesiveness set

S∞(ϕ) :=

{
θ ∈ TMN : max

i,j∈TN ,k,l∈Tr
|θki − θlj | ≤ ϕ

}
. (2)

Note that ϕ describes a level of phase cohesiveness since it is the
maximum pairwise phase difference of the oscillators inTr . The smaller
ϕ is, the more cohesive the phases are. All the phases in Tr are identical
whenϕ = 0, which is called partial phase synchronization, and this can
only happen when all the oscillators have the same natural frequency. In
this article, we allow the natural frequencies to be different, and are only
interested in the cases where phase differences in Tr are small enough.
We say that partial phase cohesiveness can take place inTr if the solution
θ : R≥0 → TMN to the system (1) asymptotically converges to this
set S∞(ϕ) for some ϕ ∈ [0, π/2). We call the particular case where
Tr = TM complete phase cohesiveness, which is also called practical
phase synchronization in [11]. In the rest of this article, we study the
partial phase cohesiveness by investigating how a solution θ(t) can
asymptotically converge to the set S∞(ϕ) and also by estimating the
value of ϕ.

Let Gr = (Vr, Er, Z) denote the subgraph composed of the nodes in
the communities contained inTr and the edges connecting pairs of them.
The weighted adjacency matrix of this subgraph Z := [zij ]Nr×Nr ∈
RNr×Nr is then given by

Z :=

⎡
⎢⎢⎢⎣
K1C A1,2 · · · A1,r

A1,2 K2C · · · A2,r

...
...

. . .
...

A1,r A2,r · · · KrC

⎤
⎥⎥⎥⎦ (3)

where C = [cij ]N×N ∈ RN×N is the adjacency matrix of a complete
graph with N nodes, where cij = 1 for i �= j, and cij = 0 otherwise.
Let D := diag(Z1Nr), then the Laplacian matrix of the graph Gr is
L := D − Z. Let λ2(L) denote the second smallest eigenvalue of L,
which is always referred to as the algebraic connectivity [27].

Let θp := [θp1 , . . . , θ
p
N ]
 and ωp := [ωp1 , . . . , ω

p
N ]
 for all p ∈ TM .

As we are only interested in the behavior of the oscillator in Gr , we

relaxed by allowing general connected networks without affecting the results in
this article.

Authorized licensed use limited to: University of Groningen. Downloaded on December 06,2021 at 10:52:12 UTC from IEEE Xplore.  Restrictions apply. 



6102 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 12, DECEMBER 2021

define x := [θ1


, . . . , θr
]
 and � := [ω1
, . . . , ωr
]
. For i ∈ N,

we define μ(i) := �i/N	 and ρ(i) := i−N · �i/N�. Given i, by μ(i)
and ρ(i), one knows that i is the ρ(i)th oscillator in μ(i)th community.
Then, from (1), the dynamics of the oscillators on Gr can be rewritten
as

ẋi = �i +

Nr∑
n=1

zi,n sin(xn − xi)

+

M∑
q=r+1

N∑
n=1

a
μ(i),q

ρ(i),n sin(θ
q
n − xi) (4)

where xi ∈ S1 and i ∈ TNr . The first summation term describes the
interactions among the oscillators within the subset of communities Tr ,
and the second one represents the interactions from the outside of Tr
to the oscillators in Tr . In order to study the phase cohesiveness of the
oscillators in Gr , we then look into the dynamics of pairwise phase
differences, given by

ẋi − ẋj = �i −�j

+

Nr∑
n=1

(zi,n sin (xn −xi)− zjn sin (xn −xj)) + uij

uij :=

M∑
q=r+1

N∑
n=1

(
a
μ(i),q

ρ(i),n sin(θ
q
n − xi)

−a
μ(j),q

ρ(j),n sin(θ
q
n − xj)

)
(5)

where i, j ∈ TNr . Let ur := [uij ]i<j ∈ RNr(Nr−1)/2. The incre-
mental dynamics (5) play crucial roles in what follows. Similar
incremental dynamics are found in [7]. However, we consider a
network-of-networks structure, and do not assume that �i = �j and∑M
q=r+1 a

μ(i),q

ρ(i),n =
∑M
q=r+1 a

μ(j),q

ρ(j),n for all i, j in TNr . In the next two
sections, we study partial phase cohesiveness in Gr with the help of
(5) using the incremental two-norm or ∞-norm (which will be intro-
duced subsequently). To analyze phase cohesiveness, the techniques of
ultimate boundedness theorem [28, Th. 4.18] will be employed.

III. INCREMENTAL TWO-NORM

In this section, we introduce the incremental two-norm, and use it as
a metric to study partial phase cohesiveness. According to Definition
1, we observe that a partially phase cohesive solution across Tr should
satisfy |xi − xj | ≤ ϕ for all i, j ∈ TNr . A quadratic Lyapunov function
has been widely used to study phase cohesiveness even when the graph
is not complete [11], [12], [18], [20], which is defined by

W (x) :=
1

2
‖B


c x‖22 (6)

whereBc ∈ RNr×(Nr(Nr−1)/2) is the incidence matrix of the complete
graph. It is also known as the incremental two-norm metric of phase
cohesiveness. For a given γ ∈ [0, π), define

S2(γ) :=
{
θ ∈ TMN : ‖B


c x‖2 ≤ γ
}
. (7)

Note that S2(γ) ⊆ S∞(γ) for any given γ ∈ [0, π). Different from
the existing results that apply to complete cohesiveness taking place
among all the oscillators in the networks [11], [12], [18], [20], we
have studied partial phase cohesiveness in our previous work [26] using
the incremental two-norm metric. Compared to our previous work, we
consider more general intercommunity coupling structures as stated in
Section II.

Let B̂c = |Bc| be the elementwise absolute value of the incidence
matrix Bc. Let

dexi :=

M∑
m=r+1

N∑
n=1

a
μ(i),m

ρ(i),n

for all i ∈ TNr , and denote

Dex := [dex1 , . . . , dexNr]

.

Now, let us provide our first result on partial phase cohesiveness on
incremental two-norm. A similar result can be found in [19, Th. 4.4].
Different from it, we consider a two-level network, i.e., communities
of oscillators, and study the partial phase cohesiveness.

Theorem 1: Assume that the algebraic connectivity of Gr is greater
than the critical value specified by

λ2(L) > ‖B

c�‖2 + ‖B̂


cD
ex‖2. (8)

Then, each of the following equations:

λ2(L) sin(γs)− ‖B̂

cD

ex‖2 = ‖B

c�‖2

(π/2)λ2(L) sinc(γm)− ‖B̂

cD

ex‖2 = ‖B

c�‖2

has a unique solution, γs ∈ [0, π/2) and γm ∈ (π/2, π], respectively,
where sinc(η) = sin(η)/η for any η ∈ S1. Furthermore, the following
statements hold.

i) For any γ ∈ [γs, γm], S2(γ) is a positively invariant set of the
system (1).

ii) For any γ ∈ [γs, γm), the solution to (1) starting from any θ(0) ∈
S2(γ) converges to the set S2(γs).

�
Proof: Choose W (x) in (6) as a Lyapunov candidate. Similar to the

proof of [20, Th. 4.6], we take the time derivative of W (x) along the
solution to (1) and obtain

Ẇ (x)≤x
BcB


c�

− sinc(γ)Nrx
Bc diag({zij}i<j)B

c x+ x
Bcur.

From [19, Lemma 7], it holds that

x
Bc diag({zij}i<j)B

c x ≥ λ2(L)‖B


c x‖22/(Nr).

From the definition of ur , one can evaluate that ‖ur‖2 ≤ ‖B̂

cD

ex‖2.
As a consequence, we arrive at

Ẇ (x) ≤ x
BcB


c� − λ2(L) sinc(γ)‖B


c x‖22

+ ‖B

c x‖2‖B̂


cD
ex‖2.

Following similar steps as those in the proof of [20, Th. 4.6], one can
show (i) and (ii) by using the ultimate boundedness theorem [28, Th.
4.18] under condition (8). �

Suppose there is only one oscillator in each community (i.e.,N = 1),
and it holds that Tr = TM , Dex = 0, Theorem 1 reduces to the best-
known result on the incremental two-norm in single-level networks
[20, Th. 4.6]. One observes that the established result in Theorem 1 is
quite restrictive if the number of oscillators is large because we use the
incremental two-norm metric. First, the critical value λ2(L) is quite
conservative since the right side of (8) depends greatly on the number
of oscillator in the network. Second, the region of attraction we have
identified in Theorem 1(ii) is quite small. To ensure ‖B


c x(0)‖2 <
γ < π, the initial phases are required to be nearly identical. In the next
section, we use incremental∞-norm, aiming to obtain less conservative
results.
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IV. INCREMENTAL ∞-NORM

A. Main Results

In this section, we take the following function as a Lyapunov candi-
date for partial phase cohesiveness:

V (x) = ‖B

c x‖∞ (9)

which is also referred to as the incremental∞-norm metric. It evaluates
the maximum of the pairwise phase differences and, thus, does not
depend on the number of oscillators. Then, one notices that S∞(ϕ) in
(2) can be rewritten into

S∞(ϕ) =
{
θ ∈ TMN : V (x) = ‖B


c x‖∞ ≤ ϕ
}
. (10)

To the best of the authors’ knowledge, the incremental ∞-norm has
only been used to establish explicit conditions for phase cohesiveness
in uniformly weighted complete networks (see [11, Th. 6.6], [10]),
although some implicit conditions for general connected networks
ensuring local stability of phase-locked solutions are found [21], [22].
Next, we introduce the notion of the generalized complement graph,
which enables us to apply the incremental ∞-norm to the analysis of
networks that are not necessarily uniformly weighted complete and to
obtain some explicit conditions. Given a graph G, its complement is a
graph on the same nodes such that its any two nodes are connected if
and only if they are unconnected in G. The generalized complement is
similar to the classical complement, but takes coupling strengths into
account.

Definition 2: Consider the weighted undirected graph G with the
weighted adjacency matrix Z, and let Km be the maximum coupling
strength of its edges. Let Ac denote the unweighted adjacency matrix
of the complete graph with the same node set as G. We say Ḡ is the
generalized complement graph of G if the following two are satisfied:
it has the same node set as G; the weighted adjacency matrix is given
by Z̄ := KmAc − Z.

Let Km be the maximum element in the matrix (3), and Ac the
unweighted adjacency matrix of the complete graph consisting of the
same node set as Gr . Then, Z̄ := [z̄ij ]Nr×Nr = KmAc − Z is the
weighted adjacency matrix of the generalized complement graph Ḡr .
In order to enable the analysis using the incremental ∞-norm, we then
rewrite (4) into the form taking the difference between the complete
graph and the generalized complement graph

ẋi = �i −Km

Nr∑
n=1

sin(xi − xn) +
Nr∑
n=1

z̄i,n sin(xi − xn)

+
M∑

q=r+1

N∑
n=1

a
μ(i),q

ρ(i),n sin(θ
q
n − xi)

where i ∈ TNr . Accordingly, the incremental dynamics (5) can be
rearranged into

ẋi − ẋj=�i −�j−Km

Nr∑
n=1

(sin(xi − xn)−sin(xj − xn))

+
Nr∑
n=1

(z̄in sin(xi − xn)− z̄jn sin(xj − xn)) + uij (11)

where i, j ∈ TNr , and uij is given by (5).
In the incremental two-norm analysis, the algebraic connectivity

plays an important role since it relates to the matrix induced two-norm.
When we proceed with the incremental ∞-norm analysis, the corre-
sponding ideas in terms of the matrix induced ∞-norm are introduced
subsequently. Given a node, its node strength is the sum of the weights

of its associated couplings. Let

D̄m := ‖Z̄‖∞

and refer to it as the maximum node strength of the generalized com-
plement graph Ḡr . Let

Din
s := min

i=1,...,Nr

Nr∑
j=1

zij

which is referred to as the minimum internal node strength of Gr .
Likewise, let the maximum external node strength be

Dex
m := ‖Dex‖∞.

The following proposition provides a relation between the maximum
node strength of Ḡr and minimum internal node strength of Gr .

Proposition 1: Given the graph Gr , its minimum node strength and
the maximum node strength of the associated generalized complement
graph satisfy D̄m = (Nr − 1)Km −Din

s .
Proof: From Z̄ = KmAc − Z, the following holds:

z̄ij =

{
0, i = j
Km − zij , i �= j.

By taking the summation with respect to j, we have

Nr∑
j=1

z̄ij = (Nr − 1)Km −
Nr∑
j=1

zij

where zii = 0. From the definition of the ∞-norm of the matrix and
the fact that all the elements of Z̄ and Z are nonnegative, it follows that

D̄m = ‖Z̄‖∞ = max
i=1,...,Nr

(
(Nr − 1)Km −

Nr∑
j=1

zij

)

= (Nr − 1)Km − min
i=1,...,Nr

Nr∑
j=1

zij

= (Nr − 1)Km −Din
s .

�
Now, we provide our main result in this article.
Theorem 2: Suppose that the minimum internal node strength Din

s

is greater than the critical value, i.e.,

Din
s >

‖B

c�‖∞ + 2Dex

m + (Nr − 2)Km

2
. (12)

Then, there exist two solutions, ϕs ∈ [0, π/2) and ϕm ∈ (π/2, π],
to the equation ‖B


c�‖∞ + 2Dex
m + 2(Nr − 1)Km − 2Din

s =
NrKm sinϕ, which are given by

ϕs = arcsin

(
‖B


c�‖∞ + 2Dex
m + 2(Nr − 1)Km − 2Din

s

NrKm

)
(13)

ϕm = π − ϕs (14)

respectively. Furthermore, the following statements hold.
i) For any ϕ ∈ [ϕs, ϕm], S∞(ϕ) is a positively invariant set of the

system (1).
ii) For every initial condition θ(0) ∈ TMN such that ϕs <

‖B

c x(0)‖∞ < ϕm, the solution θ(t) to (1) converges to

S∞(ϕs). �
Proof: We use (9) as a Lyapunov candidate and compute its upper

Dini derivative as a preliminary step. Define I′
M (t) := {i : xi(t) =
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maxj∈Vr xj(t)} andI′
S(t) := {i : xi(t) = minj∈Vr xj(t)}. Then, one

can rewrite (9) into

V (x(t)) = |xp(t)− xq(t)| ∀p ∈ I′
M (t) ∀q ∈ I′

S(t).

Next, let IM (t) := {i : ẋi(t) = maxj∈I′
M

ẋj(t)} and IS(t) := {i :
ẋi(t) = minj∈I′

S
ẋj(t)}. Then, according to [29, Lemma 2.2], the

upper Dini derivative of V (x(t)) along the solution to (1) is obtained
as

D+V (x(t)) := limsup
τ→0+

V (x(t+ τ))− V (x(t))

τ

= ẋm(t)− ẋs(t)

for all m ∈ IM (t) and s ∈ IS(t). Furthermore, from (11), it follows
that

D+V (x(t))

= �m −�s −Km

Nr∑
n=1

(sin(xm − xn)− sin(xs − xn))

+

Nr∑
n=1

(z̄mn sin(xm − xn)− z̄sn sin(xs − xn)) + ums.

Now, we are ready to prove (i) by showing that D+V (x(t)) ≤ 0
when V (x(t)) = ϕ. For any ϕ ∈ [0, π], V (x(t)) = ϕ implies that
xm(t)− xs(t) = ϕ. This equation and the trigonometric identity lead
to

sin(xm − xn)− sin(xs − xn)

= 2 sin(ϕ/2) cos

(
xm − xn

2
− xn − xs

2

)
.

From xm(t)− xs(t) = ϕ, one notices that

−ϕ ≤ xm − xn
2

− xn − xs
2

≤ ϕ.

Consequently, it holds that

cos

(
xm − xn

2
− xn − xs

2

)
≥ cos

(ϕ
2

)
and thus

sin(xm − xn)− sin(xs − xn) ≥ 2 sin(ϕ/2) cos(ϕ/2)

= sin(ϕ) (15)

where the double-angle formula is utilized. On the other hand, recalling
the definitions of D̄m and Dex

m , one knows that∣∣∣∣∣
Nr∑
n=1

(z̄mn sin(xm − xn)− z̄sn sin(xs − xn))

∣∣∣∣∣ ≤ 2D̄m

and |ums| ≤ 2Dex
m . As a consequence, from �m −�s ≤ ‖B


c�‖∞
and Proposition 1 in addition to (15), we have

D+V (x(t)) ≤ �m −�s −NrKm sin(ϕ) + 2D̄m + 2Dex
m

≤ f(ϕ) (16)

where f(y) := ‖B

c�‖∞ −NrKm sin(y) + 2((Nr − 1)Km −

Din
s ) + 2Dex

m .
Now, we aim to find a subinterval in [0, π] such that f(ϕ) ≤ 0 for

anyϕ in it. If the condition (12) holds, then f(π/2) < 0 and, thus, there
exists such a subinterval around ϕ = π/2. Moreover, sin(y) is an in-
creasing and decreasing function in [0, π/2] and [π/2, π], respectively.

Then, there always exist two points y1 ∈ [0, π/2), y2 ∈ (π/2, π] such
that f(y1) = f(y2) = 0. These two points y1 and y2 are nothing butϕs
in (13) andϕm in (14), respectively. In summary, for anyϕ ∈ [ϕs, ϕm],
D+V (x(t)) ≤ 0 when V (x(t)) = ϕ, which implies that S∞(ϕ) is
positively invariant.

Next, we prove (ii). Given x(0), it follows from (16) that for any t,
there exists γ(t) satisfying γ(t) = V (x(t)) such that

D+V (x(t)) ≤ ‖B

c�‖∞ −NrKm sin(γ(t))

+ 2
(
(Nr − 1)Km −Din

s

)
+ 2Dex

m . (17)

Recalling that the initial condition satisfies that ϕs < ‖B

c x(0)‖∞ <

ϕm, one knows that ϕs < γ(0) < ϕm. Then, the right side of (17)
is negative and, thus, the strict inequality D+(V (x(0))) < 0 holds.
From t = 0 on,D+(V (x(0))) < 0 for all t such thatϕs < γ(t) < ϕm,
and D+(V (x(0))) ≤ 0 if γ(t) = ϕs. One can then conclude that θ(t)
converges to S∞(ϕs). �

The following proposition provides a necessary condition for Km

such that (12) can be satisfied.
Proposition 2: Suppose that Din

s satisfies the condition (12), then
Km satisfies the following inequality:

Km >
‖B


c�‖∞ + 2Dex
m

Nr
. (18)

Proof: If the condition (12) is satisfied, we have

‖B

c�‖∞ + 2Dex

m + (Nr − 2)Km < 2Din
s .

One notices that Din
s ≤ (Nr − 1)Km since there are at most Nr − 1

edges connecting each node, and the coupling strength of each of them
is at most Km. It then follows that

‖B

c�‖∞ + 2Dex

m + (Nr − 2)Km < 2(Nr − 1)Km

which implies Km > (‖B

c�‖∞ + 2Dex

m )/Nr.
In the study of synchronization or phase cohesiveness, the network

is usually required to be connected. The following proposition shows
that the condition (12) implies the connectedness of the graph Gr since
from the condition (12), the minimum internal node strength satisfies
Din
s > (Nr − 2)Km/2.
Proposition 3: Consider a graph G consisting of n nodes. Let K

be the maximum coupling strength of its edges. Suppose the minimum
node strength of the nodes satisfies Ds > (n− 2)K/2, then the graph
G is connected.

Proof: We prove this proposition by contradiction. We assume that
the graph is not connected, and let i∗ and j∗ be any two nodes that
belongs to two isolated connected componentsGi∗ andGj∗ , respectively.
Let the numbers of nodes that are connected to i∗ and j∗ be ni∗ and
nj∗ , respectively. The node strength of i∗, denoted by Di∗ , satisfies
Ds ≤ Di∗ ≤ ni∗K. It follows from the assumptionDs > (n− 2)K/2
that ni∗ > (n− 2)/2, which implies that the number of nodes in Gi∗ is
strictly greater thanni∗ + 1 = n/2. Likewise, one can show the number
of nodes in Gj∗ is strictly greater than nj∗ + 1 = n/2. Then, the total
number of nodes in these two isolated connected components is strictly
greater ni∗ + nj∗ + 2 = n, which implies that the number of nodes in
the graph G is greater than n. This is a contradiction and, thus, the
network G is connected. �

B. Comparisons

We first compare the results in Theorems 1 and 2. It is worth
mentioning that the condition in Theorem 2 is less dependent on the
number of nodes Nr than that in Theorem 1 in most cases. In sharp
contrast to ‖B


c�‖2 and ‖B̂

cD

ex‖2 in (8), both ‖B

c�‖∞ and Dex

m
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in (12) are independent of Nr. Specifically, if we take δs and δm to be
the smallest and largest elements in |B


c�|, respectively, it holds that

δs
√

Nr(Nr − 1)/2 ≤ ‖B

c�‖2 ≤ δm

√
Nr(Nr − 1)/2.

A similar inequality holds for ‖B̂

cD

ex‖2. Then, one can observe that
‖B


c�‖2 + ‖B̂

cD

ex‖2 in (8) can be much larger than (Nr − 2)Km/2
in (12) if Nr is large. More importantly, S∞(ϕ) is much larger than
S2(ϕ) for the same ϕ, which implies that the domain of attraction
we estimated in Theorem 2 is much larger than that in Theorem 1.
Therefore, the convergence to a partially phase cohesive solution is
guaranteed by Theorem 2 even if the initial phases are not nearly
identical.

On the other hand, the condition (8) can be less conservative than
(12), but one would require the natural frequencies to be quite homo-
geneous, and meanwhile the external connections to be very weak in
comparison with Km. In addition, it can be observed from Proposition
3 that each node in Gr is required to have more than (Nr − 2)/2
neighbors from the condition (12). In this sense, the condition (8) is
less conservative since it only requires Gr to be connected.

The following corollary provides a sufficient condition that is in-
dependent of the network scale for the partial phase cohesiveness in
a dense noncomplete subnetwork Gr . It is certainly less conservative
than its counterpart based on the incremental two-norm.

Corollary 1: Suppose each node in Gr is connected by at least ne
edges, wherene > (Nr − 2)/2, and all the edges have the same weight
K. Assume that

K >
‖B


c�‖∞ + 2Dex
m

2ne − (Nr − 2)
(19)

then the statements (i) and (ii) in Theorem 2 hold. �
The proof follows straightforwardly by letting Din

s = neK and
Km = K. Since 2ne − (Nr − 2) ≥ 1, any K satisfying K >
‖B


c�‖∞ + 2Dex
m satisfies the condition (19) for any Nr.

Next, we compare our results with some existing ones on cluster
synchronization reported in [6]–[8]. Our results share some similarities
with them, where strong regional connections are required for partial
cohesiveness or synchronization. Different from Menara et al. [7] and
Tiberi et al. [8], we have studied partial phase cohesiveness instead
of partial phase synchronization and, thus, the oscillators in the set Tr
are not required to have the same natural frequency. In addition, we
have estimated the regions of attraction and ultimate levels of phase
cohesiveness, which the existing results [6]–[8] have not shown.

Finally, we compare our results with the previously known works
in the literature [10], [20]. Since in the existing results, researchers
usually deal with one-level networks, and study the complete phase
cohesiveness, we assume, in what follows, that there is only one
oscillator in each community in our two-level network, and let the
set Tr in which we want to synchronize the oscillators be the entire
community set TM . Then, we obtain the following two corollaries.

Corollary 2: Given an undirected graphG, assume that the following
condition is satisfied:

Din
s >

‖B

c�‖∞ + (M − 2)Km

2
(20)

then the solutions to the equation ‖B

c�‖∞ + 2Dex

m + 2(Nr −
1)Km − 2Din

s = NrKm sinϕ,ϕs ∈ [0, π/2) andϕm ∈ (π/2, π] are
given by

ϕs = arcsin

(
‖B


c�‖∞ + 2(M − 1)Km − 2Din
s

MKm

)

ϕm = π − ϕs.

Furthermore, the following two statements hold.
i) For any ϕ ∈ [ϕs, ϕm], the set S∞(ϕ) is positively invariant.

ii) For every initial conditionx(0) such thatϕs < |B

c x(0)‖∞ < ϕm,

the solution θ(t) converges to S∞(ϕs) asymptotically.
�

This corollary follows from Theorem 2 by letting N = 1, r = M ,
and Dex

m = 0. In this case, Km = maxi,j∈TM aij is the maximum
coupling strength in G. Compared to the best-known result on the
incremental two-norm [20, Th. 4.6], the result established in Corollary 2
is often less conservative. The explanation is similar to what we provide
when we compare Theorem 2 with Theorem 1. Assuming the network
is complete, we obtain the following corollary.

Corollary 3: Suppose the graph G is complete, and the coupling
strength is K/M . Assume that the coupling strength satisfies K >
‖B


c�‖∞. Then, ϕs and ϕm become

ϕs = arcsin

(
‖B


c�‖∞
K

)
, ϕm = π − ϕs.

Furthermore, the statements (i) and (ii) in Corollary 2 hold. �
This result is actually identical to the well-known one found in [10,

Th. 4.1], which presents phase cohesiveness on complete graphs with
arbitrary distributions of natural frequencies.

V. NUMERICAL EXAMPLES

In this section, we provide two examples to show the validity of the
obtained results (see Example 1), and also to show their applicability to
brain networks (see Example 2). We first introduce the order parameter
as a measure of phase cohesiveness [13], which is defined by

νeiψ =
1

n

n∑
i=1

eiθj .

The value of ν ranges from 0 to 1. The greater ν is, the higher the
node strength of phase cohesiveness becomes. If ν = 1, the phases are
completely synchronized; on the other hand, if ν = 0, the phases are
evenly spaced on the unit circle S1.

Example 1: We consider a small two-level network consisting of
six communities described in Fig. 1(a). Each community consists
of five oscillators coupled by a complete graph. We assume that the
oscillators between every two adjacent communities are interconnected
in a way shown in Fig. 1(b). The intercommunity coupling strengths
are given beside the edges in Fig. 1(a). Denote ω = [ω1
, . . . , ω6
]
,
and let ω1 = 0.5 rad/s and ωi = ω1 + 0.1(i− 1) for all i = 2, . . . , 30.
Let the intracommunity coupling strengths be K2 = K3 = 2.9, and
K1 = K4 = K5 = K6 = 0.01. One can check that the condition (12)
is satisfied for the candidate regions of partial phase cohesiveness in the
red rectangular, i.e., Tr = {2, 3}. The evolution of the incremental ∞-
norm of the oscillators’ phases in Tr is plotted in Fig. 1(c), from which
it can be observed that starting from a value less than ϕm, ‖B


c x(t)‖∞
eventually converges to a value less than ϕs. Then, phase cohesiveness
takes place between the communities 2,3. In contrast, it can be seen from
Fig. 1(d) that the value of ν remains small, which means that the other
communities in the network are always incoherent. These observations
validate our obtained results on partial phase cohesiveness in Theorem
2. Moreover, calculating the algebraic connectivity of the subgraph in
the red rectangular, we obtain λ2(L) = 5.6, which is not sufficient to
satisfy the condition (8) in Theorem 1. Consistent with what we have
claimed earlier, the results in Theorem 2 can be sharper than those in
Theorem 1.

Example 2: In this example, we investigate partial phase cohesive-
ness in human brain using an anatomical network consisting of 66
cortical regions. The coupling strengths between regions are described
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Fig. 1. (a) Network structure considered in Example 1. (b) Inter-
connection structure: each oscillator in a community is connected to
exact one oscillator in another. (c) Trajectory of ‖B


c x(t)‖∞, where
x = [θpj ]10×1, j ∈ T5, p = 2, 3. (d) Magnitude ν of the order parameter
evaluated on other regions (1, 4, 5, and 6).

by a weighted adjacency matrix A = [aij ]66×66 whose elements rep-
resent axonal fiber densities computed by means of diffusion tensor
imaging. This matrix is the average of the normalized anatomical
networks obtained from 17 subjects [24]. From our earlier analysis,
strong regional connections play an essential role in forming partial
phase cohesiveness. We identify some candidate regions by selecting
the connections of strengths greater than 20 [visualized by the large
size edges in Fig. 2(a)]. In particular, we consider two subsets of the
brain regions {9, 30, 33} and {2, 23} [see the red and blue nodes in
Fig. 2(a)], and investigate whether phase cohesiveness can occur among
them. Note that the regions {9, 30, 33} belong to the auditory network,
which have been found to exhibit correlated activity [31].

We use the model in which each of the 66 regions consists of ten
oscillators coupled by a complete graph with the coupling strength
Kp, p = 1, . . . , 66, and any two adjacent regions are connected by ten
randomly generated edges. Note that the number of oscillators in each
community does not influence our simulation results, and we choose ten
just for the convenience of computation. The weights of the ten edges
connecting regions i and j are assigned randomly, and sum up to aij .
The natural frequencies of all the oscillators are drawn from a normal
distributionN (6.5 Hz, 4/9 Hz). We chose this frequency range because
it has shown transient patterns of synchrony between brain regions
during cognitive tasks [25]. However, the selection of a frequency band
does not affect our simulation results and only the spread matters. Let
the intracommunity coupling strengths Kp = 8 for p = 9, 30, 33, and
Kp = 0.1 for all the other p’s. Thus, we have obtained a two-level net-
work from the anatomical brain network. Simulation results in Fig. 2(b)
show that the regions, 9, 30, 33, eventually become phase cohesive,
although the whole brain remains quite incoherent [see Fig. 2(c), where
the mean of ν is approximately 0.15] as expected from Theorem 2.
However, the conditions of this theorem are not even satisfied, which
implies that they are still conservative. It will be of interest to develop
further sharper conditions in the future. On the other hand, Fig. 2(d)
shows that without strong intracommunity coupling strengths, phase
cohesiveness does not take place between the regions 2 and 23 [the

Fig. 2. (a) Anatomical brain network visualized by BrainNet
Viewer [30], edges only of weights larger than 0.15 are shown for clarity.
(b) Maximum phase difference (absolute value) of the oscillators in 9,
30, 33, where x = [θpj ]30×1, j ∈ T10, p = 9, 30, 33. (c) Magnitude ν of
the global order parameter. (d) Magnitude ν evaluated on the regions
2 and 23: solid (dashed) line for the absence (presence) of strong
intracommunity coupling strengths.

blue large nodes in Fig. 2(a)], although they have a strong interregion
connection, a2,23 = 52.8023. In contrast, letting the intracommunity
coupling strengths of regions 2 and 23 be strong (K2 = K23 = 8)
renders these two regions phase cohesive [see the dashed line in
Fig. 2(d)]. This means that intracommunity coupling strengths could
play an important role in selecting regions to be synchronized.

From our theoretical results and simulations, we believe that the
anatomical properties of the brain network play very important roles
in leading to partial synchronization. We conjecture in this article that
strong interregional coupling is one of the anatomical properties that
allow for synchrony among brain regions. Then, selective synchro-
nization of a subset of those strongly connected regions is achieved
by increasing the intracommunity coupling strengths on the target
regions, which can give rise to various synchrony patterns. However,
this property of anatomical brain networks alone cannot explain all
the repertory of functional connectivity patterns observed in the brain.
Other factors, such as the symmetries of the anatomical brain network,
can play a role as well [32], [33].

VI. CONCLUSION

We have studied partial phase cohesiveness, instead of complete syn-
chronization, of Kuramoto oscillators coupled by two-level networks in
this article. Sufficient conditions in the forms of algebraic connectivity
and node strength have been obtained by using the incremental two-
norm and∞-norm, respectively. The notion of generalized complement
graphs that we introduced provides a much better tool than those in the
literature to estimate the region of attraction and ultimate level of phase
cohesiveness when the network is not uniformly weighted complete.
However, the disadvantage of this method is that the number of edges
connecting each node has a noticeable lower bound. The simulations
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have shown that strong interregional coupling is one of the anatomical
properties that could account for partial synchrony observed in the
human brain. We are interested in investigating other properties that
could render partial synchronization.
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