86 research outputs found

    Tuberculosis as a risk factor for systemic lupus erythematosus: Results of a nationwide study in Taiwan

    Get PDF
    Abstract Background: A previous study, with relatively small number of patients, showed tha

    Sequencing of the Hepatitis C Virus: A Systematic Review

    Get PDF
    Since the identification of hepatitis C virus (HCV), viral sequencing has been important in understanding HCV classification, epidemiology, evolution, transmission clustering, treatment response and natural history. The length and diversity of the HCV genome has resulted in analysis of certain regions of the virus, however there has been little standardisation of protocols. This systematic review was undertaken to map the location and frequency of sequencing on the HCV genome in peer reviewed publications, with the aim to produce a database of sequencing primers and amplicons to inform future research. Medline and Scopus databases were searched for English language publications based on keyword/MeSH terms related to sequence analysis (9 terms) or HCV (3 terms), plus "primer" as a general search term. Exclusion criteria included non-HCV research, review articles, duplicate records, and incomplete description of HCV sequencing methods. The PCR primer locations of accepted publications were noted, and purpose of sequencing was determined. A total of 450 studies were accepted from the 2099 identified, with 629 HCV sequencing amplicons identified and mapped on the HCV genome. The most commonly sequenced region was the HVR-1 region, often utilised for studies of natural history, clustering/transmission, evolution and treatment response. Studies related to genotyping/classification or epidemiology of HCV genotype generally targeted the 5'UTR, Core and NS5B regions, while treatment response/resistance was assessed mainly in the NS3-NS5B region with emphasis on the Interferon sensitivity determining region (ISDR) region of NS5A. While the sequencing of HCV is generally constricted to certain regions of the HCV genome there is little consistency in the positioning of sequencing primers, with the exception of a few highly referenced manuscripts. This study demonstrates the heterogeneity of HCV sequencing, providing a comprehensive database of previously published primer sets to be utilised in future sequencing studies

    Increasing hepatitis B viral load is associated with risk of signi¢cant liver ¢brosis in HBeAg-negative but not HBeAg-positive chronic hepatitis B

    Get PDF
    Abstract Background/aims: To evaluate the association between demographical features, serum ALT and HBV DNA and the prevalence of significant fibrosis and inflammation on liver biopsy in patients with chronic hepatitis B. Methods: In this cross-sectional study of patients on St Vincent's Hospital HBV database, patients were classified into three groups on the basis of HBeAg status and HBV DNA level and the prevalence of significant (F2/3/4) fibrosis and (A2/3) inflammation in each group was established. Patients were also divided into HBeAg-positive and -negative groups and examined for the prevalence of significant fibrosis/inflammation in the strata of HBV DNA and ALT. Predictors of significant fibrosis and inflammation in HBeAg-positive and -negative patients were examined by logistic regression. Results: Three hundred and ninety four patients (HBeAg positive = 198; HBeAg negative = 196) with liver biopsy were identified. Fifty-eight percent of HBeAg-negative patients with HBV DNA 4 25 000 IU/ml had F2/3/4 fibrosis. HBV DNA and F2/3/4 were positively correlated in HBeAg-negative patients [odds ratio (OR) 1.42, P = 0.001] but inversely correlated in HBeAg-positive patients (OR 0.71, P = 0.03). HBV DNA was an independent predictor of significant fibrosis in HBeAg negative (P = 0.03) but not HBeAg-positive patients. In HBeAgpositive patients, age was the only predictor of significant fibrosis (P = 0.001) and ALT the only predictor of significant inflammation (P = 0.003). In the whole cohort there was a close positive association between inflammation and fibrosis. Conclusion: Increasing levels of HBV DNA are associated with increasing prevalence of significant fibrosis only in patients with HBeAgnegative CHB

    Protein Networks Reveal Detection Bias and Species Consistency When Analysed by Information-Theoretic Methods

    Get PDF
    We apply our recently developed information-theoretic measures for the characterisation and comparison of protein–protein interaction networks. These measures are used to quantify topological network features via macroscopic statistical properties. Network differences are assessed based on these macroscopic properties as opposed to microscopic overlap, homology information or motif occurrences. We present the results of a large–scale analysis of protein–protein interaction networks. Precise null models are used in our analyses, allowing for reliable interpretation of the results. By quantifying the methodological biases of the experimental data, we can define an information threshold above which networks may be deemed to comprise consistent macroscopic topological properties, despite their small microscopic overlaps. Based on this rationale, data from yeast–two–hybrid methods are sufficiently consistent to allow for intra–species comparisons (between different experiments) and inter–species comparisons, while data from affinity–purification mass–spectrometry methods show large differences even within intra–species comparisons

    New insights into protein-protein interaction data lead to increased estimates of the S. cerevisiae interactome size

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As protein interactions mediate most cellular mechanisms, protein-protein interaction networks are essential in the study of cellular processes. Consequently, several large-scale interactome mapping projects have been undertaken, and protein-protein interactions are being distilled into databases through literature curation; yet protein-protein interaction data are still far from comprehensive, even in the model organism <it>Saccharomyces cerevisiae</it>. Estimating the interactome size is important for evaluating the completeness of current datasets, in order to measure the remaining efforts that are required.</p> <p>Results</p> <p>We examined the yeast interactome from a new perspective, by taking into account how thoroughly proteins have been studied. We discovered that the set of literature-curated protein-protein interactions is qualitatively different when restricted to proteins that have received extensive attention from the scientific community. In particular, these interactions are less often supported by yeast two-hybrid, and more often by more complex experiments such as biochemical activity assays. Our analysis showed that high-throughput and literature-curated interactome datasets are more correlated than commonly assumed, but that this bias can be corrected for by focusing on well-studied proteins. We thus propose a simple and reliable method to estimate the size of an interactome, combining literature-curated data involving well-studied proteins with high-throughput data. It yields an estimate of at least 37, 600 direct physical protein-protein interactions in <it>S. cerevisiae</it>.</p> <p>Conclusions</p> <p>Our method leads to higher and more accurate estimates of the interactome size, as it accounts for interactions that are genuine yet difficult to detect with commonly-used experimental assays. This shows that we are even further from completing the yeast interactome map than previously expected.</p

    Accounting for Redundancy when Integrating Gene Interaction Databases

    Get PDF
    During the last years gene interaction networks are increasingly being used for the assessment and interpretation of biological measurements. Knowledge of the interaction partners of an unknown protein allows scientists to understand the complex relationships between genetic products, helps to reveal unknown biological functions and pathways, and get a more detailed picture of an organism's complexity. Being able to measure all protein interactions under all relevant conditions is virtually impossible. Hence, computational methods integrating different datasets for predicting gene interactions are needed. However, when integrating different sources one has to account for the fact that some parts of the information may be redundant, which may lead to an overestimation of the true likelihood of an interaction. Our method integrates information derived from three different databases (Bioverse, HiMAP and STRING) for predicting human gene interactions. A Bayesian approach was implemented in order to integrate the different data sources on a common quantitative scale. An important assumption of the Bayesian integration is independence of the input data (features). Our study shows that the conditional dependency cannot be ignored when combining gene interaction databases that rely on partially overlapping input data. In addition, we show how the correlation structure between the databases can be detected and we propose a linear model to correct for this bias. Benchmarking the results against two independent reference data sets shows that the integrated model outperforms the individual datasets. Our method provides an intuitive strategy for weighting the different features while accounting for their conditional dependencies

    A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens

    Get PDF
    Understanding the mechanisms by which plants trigger host defenses in response to viruses has been a challenging problem owing to the multiplicity of factors and complexity of interactions involved. The advent of genomic techniques, however, has opened the possibility to grasp a global picture of the interaction. Here, we used Arabidopsis thaliana to identify and compare genes that are differentially regulated upon infection with seven distinct (+)ssRNA and one ssDNA plant viruses. In the first approach, we established lists of genes differentially affected by each virus and compared their involvement in biological functions and metabolic processes. We found that phylogenetically related viruses significantly alter the expression of similar genes and that viruses naturally infecting Brassicaceae display a greater overlap in the plant response. In the second approach, virus-regulated genes were contextualized using models of transcriptional and protein-protein interaction networks of A. thaliana. Our results confirm that host cells undergo significant reprogramming of their transcriptome during infection, which is possibly a central requirement for the mounting of host defenses. We uncovered a general mode of action in which perturbations preferentially affect genes that are highly connected, central and organized in modules. © 2012 Rodrigo et al.This work was supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) grants BFU2009-06993 (S. F. E.) and BIO2006-13107 (C. L.) and by Generalitat Valenciana grant PROMETEO2010/016 (S. F. E.). G. R. is supported by a graduate fellowship from the Generalitat Valenciana (BFPI2007-160) and J.C. by a contract from MICINN grant TIN2006-12860. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Rodrigo Tarrega, G.; Carrera Montesinos, J.; Ruiz-Ferrer, V.; Del Toro, F.; Llave, C.; Voinnet, O.; Elena Fito, SF. (2012). A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens. PLoS ONE. 7(7):40526-40526. https://doi.org/10.1371/journal.pone.0040526S405264052677Peng, X., Chan, E. Y., Li, Y., Diamond, D. L., Korth, M. J., & Katze, M. G. (2009). Virus–host interactions: from systems biology to translational research. Current Opinion in Microbiology, 12(4), 432-438. doi:10.1016/j.mib.2009.06.003Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11(8), 539-548. doi:10.1038/nrg2812Maule, A., Leh, V., & Lederer, C. (2002). The dialogue between viruses and hosts in compatible interactions. Current Opinion in Plant Biology, 5(4), 279-284. doi:10.1016/s1369-5266(02)00272-8Whitham, S. A., Quan, S., Chang, H.-S., Cooper, B., Estes, B., Zhu, T., … Hou, Y.-M. (2003). Diverse RNA viruses elicit the expression of common sets of genes in susceptibleArabidopsis thalianaplants. The Plant Journal, 33(2), 271-283. doi:10.1046/j.1365-313x.2003.01625.xBailer, S., & Haas, J. (2009). Connecting viral with cellular interactomes. Current Opinion in Microbiology, 12(4), 453-459. doi:10.1016/j.mib.2009.06.004Whitham, S. A., Yang, C., & Goodin, M. M. (2006). Global Impact: Elucidating Plant Responses to Viral Infection. Molecular Plant-Microbe Interactions, 19(11), 1207-1215. doi:10.1094/mpmi-19-1207MacPherson, J. I., Dickerson, J. E., Pinney, J. W., & Robertson, D. L. (2010). Patterns of HIV-1 Protein Interaction Identify Perturbed Host-Cellular Subsystems. PLoS Computational Biology, 6(7), e1000863. doi:10.1371/journal.pcbi.1000863Jenner, R. G., & Young, R. A. (2005). Insights into host responses against pathogens from transcriptional profiling. Nature Reviews Microbiology, 3(4), 281-294. doi:10.1038/nrmicro1126Andeweg, A. C., Haagmans, B. L., & Osterhaus, A. D. (2008). Virogenomics: the virus–host interaction revisited. Current Opinion in Microbiology, 11(5), 461-466. doi:10.1016/j.mib.2008.09.010Elena, S. F., Carrera, J., & Rodrigo, G. (2011). A systems biology approach to the evolution of plant–virus interactions. Current Opinion in Plant Biology, 14(4), 372-377. doi:10.1016/j.pbi.2011.03.013Tan, S.-L., Ganji, G., Paeper, B., Proll, S., & Katze, M. G. (2007). Systems biology and the host response to viral infection. Nature Biotechnology, 25(12), 1383-1389. doi:10.1038/nbt1207-1383De la Fuente, A. (2010). From ‘differential expression’ to ‘differential networking’ – identification of dysfunctional regulatory networks in diseases. Trends in Genetics, 26(7), 326-333. doi:10.1016/j.tig.2010.05.001Albert, R. (2005). Scale-free networks in cell biology. Journal of Cell Science, 118(21), 4947-4957. doi:10.1242/jcs.02714Yu, H., Braun, P., Yildirim, M. A., Lemmens, I., Venkatesan, K., Sahalie, J., … Vidal, M. (2008). High-Quality Binary Protein Interaction Map of the Yeast Interactome Network. Science, 322(5898), 104-110. doi:10.1126/science.1158684Barabási, A.-L., & Oltvai, Z. N. (2004). Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101-113. doi:10.1038/nrg1272Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378-382. doi:10.1038/35019019Mukhtar, M. S., Carvunis, A.-R., Dreze, M., Epple, P., Steinbrenner, J., … Moore, J. (2011). Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network. Science, 333(6042), 596-601. doi:10.1126/science.1203659Calderwood, M. A., Venkatesan, K., Xing, L., Chase, M. R., Vazquez, A., Holthaus, A. M., … Johannsen, E. (2007). Epstein-Barr virus and virus human protein interaction maps. Proceedings of the National Academy of Sciences, 104(18), 7606-7611. doi:10.1073/pnas.0702332104De Chassey, B., Navratil, V., Tafforeau, L., Hiet, M. S., Aublin‐Gex, A., Agaugué, S., … Lotteau, V. (2008). Hepatitis C virus infection protein network. Molecular Systems Biology, 4(1), 230. doi:10.1038/msb.2008.66Shapira, S. D., Gat-Viks, I., Shum, B. O. V., Dricot, A., de Grace, M. M., Wu, L., … Hacohen, N. (2009). A Physical and Regulatory Map of Host-Influenza Interactions Reveals Pathways in H1N1 Infection. Cell, 139(7), 1255-1267. doi:10.1016/j.cell.2009.12.018Dyer, M. D., Murali, T. M., & Sobral, B. W. (2008). The Landscape of Human Proteins Interacting with Viruses and Other Pathogens. PLoS Pathogens, 4(2), e32. doi:10.1371/journal.ppat.0040032Golem, S., & Culver, J. N. (2003). Tobacco mosaic virusInduced Alterations in the Gene Expression Profile ofArabidopsis thaliana. Molecular Plant-Microbe Interactions, 16(8), 681-688. doi:10.1094/mpmi.2003.16.8.681Espinoza, C., Medina, C., Somerville, S., & Arce-Johnson, P. (2007). Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. Journal of Experimental Botany, 58(12), 3197-3212. doi:10.1093/jxb/erm165Yang, C., Guo, R., Jie, F., Nettleton, D., Peng, J., Carr, T., … Whitham, S. A. (2007). Spatial Analysis ofArabidopsis thalianaGene Expression in Response toTurnip mosaic virusInfection. Molecular Plant-Microbe Interactions, 20(4), 358-370. doi:10.1094/mpmi-20-4-0358Agudelo-Romero, P., Carbonell, P., de la Iglesia, F., Carrera, J., Rodrigo, G., Jaramillo, A., … Elena, S. F. (2008). Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virology Journal, 5(1), 92. doi:10.1186/1743-422x-5-92Agudelo-Romero, P., Carbonell, P., Perez-Amador, M. A., & Elena, S. F. (2008). Virus Adaptation by Manipulation of Host’s Gene Expression. PLoS ONE, 3(6), e2397. doi:10.1371/journal.pone.0002397Ascencio-Ibáñez, J. T., Sozzani, R., Lee, T.-J., Chu, T.-M., Wolfinger, R. D., Cella, R., & Hanley-Bowdoin, L. (2008). Global Analysis of Arabidopsis Gene Expression Uncovers a Complex Array of Changes Impacting Pathogen Response and Cell Cycle during Geminivirus Infection. Plant Physiology, 148(1), 436-454. doi:10.1104/pp.108.121038Babu, M., Griffiths, J. S., Huang, T.-S., & Wang, A. (2008). Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genomics, 9(1), 325. doi:10.1186/1471-2164-9-325De Vienne, D. M., Giraud, T., & Martin, O. C. (2007). A congruence index for testing topological similarity between trees. Bioinformatics, 23(23), 3119-3124. doi:10.1093/bioinformatics/btm500Wise, R. P., Moscou, M. J., Bogdanove, A. J., & Whitham, S. A. (2007). Transcript Profiling in Host–Pathogen Interactions. Annual Review of Phytopathology, 45(1), 329-369. doi:10.1146/annurev.phyto.45.011107.143944Handford, M. G., & Carr, J. P. (2007). A defect in carbohydrate metabolism ameliorates symptom severity in virus-infected Arabidopsis thaliana. Journal of General Virology, 88(1), 337-341. doi:10.1099/vir.0.82376-0Hou, B., Lim, E.-K., Higgins, G. S., & Bowles, D. J. (2004). N-Glucosylation of Cytokinins by Glycosyltransferases ofArabidopsis thaliana. Journal of Biological Chemistry, 279(46), 47822-47832. doi:10.1074/jbc.m409569200Schwender, J., Goffman, F., Ohlrogge, J. B., & Shachar-Hill, Y. (2004). Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature, 432(7018), 779-782. doi:10.1038/nature03145Pagán, I., Alonso-Blanco, C., & García-Arenal, F. (2008). Host Responses in Life-History Traits and Tolerance to Virus Infection in Arabidopsis thaliana. PLoS Pathogens, 4(8), e1000124. doi:10.1371/journal.ppat.1000124Carrera, J., Rodrigo, G., Jaramillo, A., & Elena, S. F. (2009). Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biology, 10(9), R96. doi:10.1186/gb-2009-10-9-r96Geisler-Lee, J., O’Toole, N., Ammar, R., Provart, N. J., Millar, A. H., & Geisler, M. (2007). A Predicted Interactome for Arabidopsis. Plant Physiology, 145(2), 317-329. doi:10.1104/pp.107.103465Ma, S., Gong, Q., & Bohnert, H. J. (2007). An Arabidopsis gene network based on the graphical Gaussian model. Genome Research, 17(11), 1614-1625. doi:10.1101/gr.6911207Yamada, T., & Bork, P. (2009). Evolution of biomolecular networks — lessons from metabolic and protein interactions. Nature Reviews Molecular Cell Biology, 10(11), 791-803. doi:10.1038/nrm2787Humphries, M. D., & Gurney, K. (2008). Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence. PLoS ONE, 3(4), e0002051. doi:10.1371/journal.pone.0002051Stumpf, M. P. H., & Ingram, P. J. (2005). Probability models for degree distributions of protein interaction networks. Europhysics Letters (EPL), 71(1), 152-158. doi:10.1209/epl/i2004-10531-8Khanin, R., & Wit, E. (2006). How Scale-Free Are Biological Networks. Journal of Computational Biology, 13(3), 810-818. doi:10.1089/cmb.2006.13.810Daudin, J.-J., Picard, F., & Robin, S. (2007). A mixture model for random graphs. Statistics and Computing, 18(2), 173-183. doi:10.1007/s11222-007-9046-7Uetz, P. (2006). Herpesviral Protein Networks and Their Interaction with the Human Proteome. Science, 311(5758), 239-242. doi:10.1126/science.1116804Choi, I.-R., Stenger, D. C., & French, R. (2000). Multiple Interactions among Proteins Encoded by the Mite-Transmitted Wheat Streak Mosaic Tritimovirus. Virology, 267(2), 185-198. doi:10.1006/viro.1999.0117Guo, D., Saarma, M., Rajamäki, M.-L., & Valkonen, J. P. T. (2001). Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. Journal of General Virology, 82(4), 935-939. doi:10.1099/0022-1317-82-4-935Lin, L., Shi, Y., Luo, Z., Lu, Y., Zheng, H., Yan, F., … Wu, Y. (2009). Protein–protein interactions in two potyviruses using the yeast two-hybrid system. Virus Research, 142(1-2), 36-40. doi:10.1016/j.virusres.2009.01.006Shen, W., Wang, M., Yan, P., Gao, L., & Zhou, P. (2010). Protein interaction matrix of Papaya ringspot virus type P based on a yeast two-hybrid system. Acta Virologica, 54(1), 49-54. doi:10.4149/av_2010_01_49Redner, S. (2008). Teasing out the missing links. Nature, 453(7191), 47-48. doi:10.1038/453047aIrizarry, R. A. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4(2), 249-264. doi:10.1093/biostatistics/4.2.249Smyth, G. K. (2004). Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Statistical Applications in Genetics and Molecular Biology, 3(1), 1-25. doi:10.2202/1544-6115.1027Allemeersch, J., Durinck, S., Vanderhaeghen, R., Alard, P., Maes, R., Seeuws, K., … Kuiper, M. T. R. (2005). Benchmarking the CATMA Microarray. A Novel Tool forArabidopsis Transcriptome Analysis. Plant Physiology, 137(2), 588-601. doi:10.1104/pp.104.051300Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association, 74(368), 829-836. doi:10.1080/01621459.1979.10481038Tarraga, J., Medina, I., Carbonell, J., Huerta-Cepas, J., Minguez, P., Alloza, E., … Dopazo, J. (2008). GEPAS, a web-based tool for microarray data analysis and interpretation. Nucleic Acids Research, 36(Web Server), W308-W314. doi:10.1093/nar/gkn303Al-Shahrour, F., Minguez, P., Vaquerizas, J. M., Conde, L., & Dopazo, J. (2005). BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Research, 33(Web Server), W460-W464. doi:10.1093/nar/gki456Al-Shahrour, F., Minguez, P., Tárraga, J., Medina, I., Alloza, E., Montaner, D., & Dopazo, J. (2007). FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Research, 35(suppl_2), W91-W96. doi:10.1093/nar/gkm260Mueller, L. A., Zhang, P., & Rhee, S. Y. (2003). AraCyc: A Biochemical Pathway Database for Arabidopsis. Plant Physiology, 132(2), 453-460. doi:10.1104/pp.102.017236Navratil, V., de Chassey, B., Combe, C., & Lotteau, V. (2011). When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases. BMC Systems Biology, 5(1), 13. doi:10.1186/1752-0509-5-13Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.

    Triangle network motifs predict complexes by complementing high-error interactomes with structural information

    Get PDF
    BackgroundA lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles.ResultsWe find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes.ConclusionGiven high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that relatively little structural information would be sufficient for finding complexes involving most of the proteins and interactions in a typical PPIN

    Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins

    Get PDF
    Delivery is a stressful and risky event menacing the newborn. The mother-dependent respiration has to be replaced by autonomous pulmonary breathing immediately after delivery. If delayed, it may lead to deficient oxygen supply compromising survival and development of the central nervous system. Lack of oxygen availability gives rise to depletion of NAD+ tissue stores, decrease of ATP formation, weakening of the electron transport pump and anaerobic metabolism and acidosis, leading necessarily to death if oxygenation is not promptly re-established. Re-oxygenation triggers a cascade of compensatory biochemical events to restore function, which may be accompanied by improper homeostasis and oxidative stress. Consequences may be incomplete recovery, or excess reactions that worsen the biological outcome by disturbed metabolism and/or imbalance produced by over-expression of alternative metabolic pathways. Perinatal asphyxia has been associated with severe neurological and psychiatric sequelae with delayed clinical onset. No specific treatments have yet been established. In the clinical setting, after resuscitation of an infant with birth asphyxia, the emphasis is on supportive therapy. Several interventions have been proposed to attenuate secondary neuronal injuries elicited by asphyxia, including hypothermia. Although promising, the clinical efficacy of hypothermia has not been fully demonstrated. It is evident that new approaches are warranted. The purpose of this review is to discuss the concept of sentinel proteins as targets for neuroprotection. Several sentinel proteins have been described to protect the integrity of the genome (e.g. PARP-1; XRCC1; DNA ligase IIIα; DNA polymerase β, ERCC2, DNA-dependent protein kinases). They act by eliciting metabolic cascades leading to (i) activation of cell survival and neurotrophic pathways; (ii) early and delayed programmed cell death, and (iii) promotion of cell proliferation, differentiation, neuritogenesis and synaptogenesis. It is proposed that sentinel proteins can be used as markers for characterising long-term effects of perinatal asphyxia, and as targets for novel therapeutic development and innovative strategies for neonatal care
    corecore