7,517 research outputs found

    Fast-dissolving core-shell composite microparticles of quercetin fabricated using a coaxial electrospray process

    Get PDF
    This study reports on novel fast-dissolving core-shell composite microparticles of quercetin fabricated using coaxial electrospraying. A PVC-coated concentric spinneret was developed to conduct the electrospray process. A series of analyses were undertaken to characterize the resultant particles in terms of their morphology, the physical form of their components, and their functional performance. Scanning and transmission electron microscopies revealed that the microparticles had spherical morphologies with clear core-shell structure visible. Differential scanning calorimetry and X-ray diffraction verified that the quercetin active ingredient in the core and sucralose and sodium dodecyl sulfate (SDS) excipients in the shell existed in the amorphous state. This is believed to be a result of second-order interactions between the components; these could be observed by Fourier transform infrared spectroscopy. In vitro dissolution and permeation studies showed that the microparticles rapidly released the incorporated quercetin within one minute, and had permeation rates across the sublingual mucosa around 10 times faster than raw quercetin

    Scene Coordinate Regression with Angle-Based Reprojection Loss for Camera Relocalization

    Get PDF
    Image-based camera relocalization is an important problem in computer vision and robotics. Recent works utilize convolutional neural networks (CNNs) to regress for pixels in a query image their corresponding 3D world coordinates in the scene. The final pose is then solved via a RANSAC-based optimization scheme using the predicted coordinates. Usually, the CNN is trained with ground truth scene coordinates, but it has also been shown that the network can discover 3D scene geometry automatically by minimizing single-view reprojection loss. However, due to the deficiencies of the reprojection loss, the network needs to be carefully initialized. In this paper, we present a new angle-based reprojection loss, which resolves the issues of the original reprojection loss. With this new loss function, the network can be trained without careful initialization, and the system achieves more accurate results. The new loss also enables us to utilize available multi-view constraints, which further improve performance.Comment: ECCV 2018 Workshop (Geometry Meets Deep Learning

    Electrosprayed core-shell nanoparticles of PVP and shellac for furnishing biphasic controlled release of ferulic acid

    Get PDF
    Coaxial electrospraying was explored to organize polymer excipients in a core-shell manner for providing biphasic controlled release of active ingredient. With ferulic acid (FA) as a model drug, and shellac and polyvinylpyrrolidone (PVP) as the core and shell polymeric matrices, core-shell nanoparticles were successfully fabricated. A series of tests were carried out to characterize the prepared core-shell nanoparticles and also the nanoparticles prepared using a single fluid electrospraying of the shell or core fluids alone. The core-shell nanoparticles had an average diameter of 530 ± 80 nm with clear core-shell structure. The contained FA was converted to an amorphous state both in the core and the shell parts due to the favorable hydrogen bonding between the components. In vitro dissolution tests demonstrated that the core-shell nanoparticles were able to provide the desired biphasic drug-controlled release profiles. Coaxial electrospraying is a useful tool for the development of novel nanodrug delivery systems from polymers

    Relationships of trace gases and aerosols and the emission characteristics at Lin'an, a rural site in eastern China, during spring 2001

    Get PDF
    We present measurements of trace gases and fine aerosols obtained from a rural site in eastern China during 18 February to 30 April 2001. The field program aimed to characterize the variations in aerosol and gaseous pollutant concentrations and the emission signatures from the inland region of eastern China in the spring season. The data included O3, CO, NO, NOy*, SO2, methane, C2-C8 nonmethane hydrocarbons (NMHCs), C 1-C2 halocarbons, and the chemical composition of PM2.5. The average hourly mixing ratios (±standard deviation) of CO, SO2, and NOy* were 677 (±315) ppbv, 15.9 (±14.6) ppbv, and 13.8 (±7.2) ppbv, respectively. The mean daytime ozone mixing ratio was 41 (± 19) ppbv. The most abundant NMHC was ethane (3189 ± 717 pptv), followed by ethyne (2475 ± 1395 pptv), ethene (1679 ± 1455 pptv), and toluene (1529 ± 1608 pptv). Methyl chloride was the most abundant halocarbon (1108 ± 653 pptv). The average concentrations of particulate organic matter (POM, as organic carbon, OC, times 1.4) and elemental carbon (EC) in PM2.5 were 21.5 (±7) μg/m3 and 2.5 (±0.7) μg/m3, respectively, and sulfate and nitrate levels were 17.3 (±6.6) and 6.5 (±4) μg/m3, respectively. CO showed moderate to good correlation with NOy* (r2 = 0.59), OC (r2 = 0.65), CH3Cl (r2 = 0.59), soluble potassium (r2 = 0.53), and many NMHCs, indicating contributions from the burning of biofuel/biomass. CO also correlated with an industrial tracer, C2Cl4, indicative of some influence from industrial sources. SO2, on the other hand, correlated well with EC (r2 = 0.56), reflecting the contribution from the burning of coal. Ammonium was sufficiently abundant to fully neutralize sulfate and nitrate, indicating that there were strong emissions of ammonia from agricultural activities. Silicon and calcium had poor correlations with iron and aluminum, revealing the presence of source(s) for Si and Ca other than from soil. Examination of C2H2/CO, C3H8/C 2H6, nitrate/(nitrate + NOy* , and sulfate/(SO2 + sulfate) suggested that relatively fresh air masses had been sampled at the study site in the spring season. Comparison of the observed ratios/slopes with those derived from emission inventories showed that while the observed SO2/NO y* ratio (1.29 ppbv/ppbv) in March was comparable (within 20%) to the inventory-derived ratio for the study region, the measured CO/NOy* slope (37 ppbv/ppbv) was about 200% larger. The observed slope of CO relative to NMHC (including ethane, propane, butanes, ethene, and ethyne) also indicated the presence of excess CO, compared to the ratios from the inventories. These results strongly suggest that emissions of CO in eastern China have been underrepresented. The findings of this study highlight the importance of characterizing trace gases and aerosols within source regions of the Asian continent. The springtime results were also compared with data previously collected at the site in 1999-2000 and with those obtained on the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft and from a coastal site in South China for the same study period. Copyright 2004 by the American Geophysical Union

    Electrosprayed Janus Particles for Combined Photo-Chemotherapy

    Get PDF
    This work is a proof of concept study establishing the potential of electrosprayed Janus particles for combined photodynamic therapy-chemotherapy. Sub-micron-sized particles of polyvinylpyrrolidone containing either an anti-cancer drug (carmofur) or a photosensitiser (rose bengal; RB), and Janus particles containing both in separate compartments were prepared. The functional components were present in the amorphous form in all the particles, and infrared spectroscopy indicated that intermolecular interactions formed between the different species. In vitro drug release studies showed that both carmofur and RB were released at approximately the same rate, with dissolution complete after around 250 min. Cytotoxicity studies were undertaken on model human dermal fibroblasts (HDF) and lung cancer (A549) cells, and the influence of light on cell death explored. Formulations containing carmofur as the sole active ingredient were highly toxic to both cell lines, with or without a light treatment. The RB formulations were non-toxic to HDF when no light was applied, and with photo-treatment caused large amounts of cell death for both A549 and HDF cells. The Janus formulation containing both RB and carmofur was non-toxic to HDF without light, and only slightly toxic with the photo-treatment. In contrast, it was hugely toxic to A549 cells when light was applied. The Janus particles are thus highly selective for cancer cells, and it is hence proposed that such electrosprayed particles containing both a chemotherapeutic agent and photosensitiser have great potential in combined chemotherapy/photodynamic therapy

    Entanglement generation outside a Schwarzschild black hole and the Hawking effect

    Full text link
    We examine the Hawking effect by studying the asymptotic entanglement of two mutually independent two-level atoms placed at a fixed radial distance outside a Schwarzschild black hole in the framework of open quantum systems. We treat the two-atom system as an open quantum system in a bath of fluctuating quantized massless scalar fields in vacuum and calculate the concurrence, a measurement of entanglement, of the equilibrium state of the system at large times, for the Unruh, Hartle-Hawking and Boulware vacua respectively. We find, for all three vacuum cases, that the atoms turn out to be entangled even if they are initially in a separable state as long as the system is not placed right at the even horizon. Remarkably, only in the Unruh vacuum, will the asymptotic entanglement be affected by the backscattering of the thermal radiation off the space-time curvature. The effect of the back scatterings on the asymptotic entanglement cancels in the Hartle-Hawking vacuum case.Comment: 15 pages, no figures, Revte

    Nanofibers Fabricated Using Triaxial Electrospinning as Zero Order Drug Delivery Systems

    Get PDF
    A new strategy for creating functional trilayer nanofibers through triaxial electrospinning is demonstrated. Ethyl cellulose (EC) was used as the filament-forming matrix in the outer, middle, and inner working solutions and was combined with varied contents of the model active ingredient ketoprofen (KET) in the three fluids. Triaxial electrospinning was successfully carried out to generate medicated nanofibers. The resultant nanofibers had diameters of 0.74 ± 0.06 μm, linear morphologies, smooth surfaces, and clear trilayer nanostructures. The KET concentration in each layer gradually increased from the outer to the inner layer. In vitro dissolution tests demonstrated that the nanofibers could provide linear release of KET over 20 h. The protocol reported in this study thus provides a facile approach to creating functional nanofibers with sophisticated structural features

    Birth models of care and intervention rates: The impact of birth centres.

    Full text link
    Birth centres offer a midwifery-led model of care which supports a non-medicalised approach to childbirth. They are often reported as having low rates of birth intervention, however the precise impact is obscured because less disadvantaged mothers with less complex pregnancies, and who prefer and often select little intervention, are more likely to choose a birth centre. In this paper, we use a methodology that purges the impact of these selection effects and provides a causal interpretation of the impact of birth centres on intervention outcomes. Using administrative birth data on over 364,000 births in Australia's most populous state between 2001 and 2012, we implement an instrumental variables framework to address confounding factors influencing choice of birth setting. We find that giving birth in a birth centre results in significantly lower probabilities of intervention, and that critically, this impact has been increasing over time. Our estimates are larger than those in existing studies, reflecting our newer data, diverging intervention rates across birth settings, and our accounting for important selection effects. The results emphasise the greater role of birth centres in delivering on policy priorities which include greater maternal autonomy, lower intervention rates, and lower health system costs

    Multifunctional fabrics finished using electrosprayed hybrid Janus particles containing nanocatalysts

    Get PDF
    There is great market demand for fabrics equipped with multiple functionalities. However, most methods to impart these properties to a pristine fabric are complicated, time-consuming, and expensive. In this work, Janus particles with one side comprising TiO2 nanoparticles (NPs)-PVDF (poly (vinylidene fluoride)) and the other an epoxy resin (TPE) were deposited on a fabric surface. The aim was to endow the fabric with the superhydrophobic, UV resistance, and antimicrobial properties. The Janus particles were firmly attached to the fabrics through the adhesion effects of the epoxy resin. Characterization by XRD, SEM, EDX, and FTIR verified the successful finishing of the fabric with TPE particles. The ultraviolet protection factor increased from 7.86 for the pristine fabric to 733 after finishing. The finished fabric also exhibited superhydrophobic properties, with a water contact angle of 152°. Further, the coating of the fabric did not hamper its gas permeability. Potent antibacterial properties against E. coli were observed owing to the antibacterial properties of TiO2 under pre-irradiation by UV light. The protocols reported here provide a new platform for the nano-finishing of fabrics, allowing new functions to be imparted without compromising

    Electrospun pH-sensitive core-shell polymer nanocomposites fabricated using a tri-axial process

    Get PDF
    A modified tri-axial electrospinning process was developed for the generation of a new type of pH-sensitive polymer/lipid nanocomposite. The systems produced are able to promote both dissolution and permeation of a model poorly water-soluble drug. First, we show that it is possible to run a tri-axial procress with only one of the three fluids being electrospinnable. Using an electrospinnable middle fluid of Eudragit S100 (ES100) with pure ethanol as the outer solvent and an unspinnable lecithin-diclofenac sodium (PL-DS) core solution, nanofibers with linear morphology and clear core/shell structures can be fabricated continuously and smoothly. X-ray diffraction proved that these nanofibers are structural nanocomposites with the drug present in an amorphous state. In vitro dissolution tests demonstrated that the formulations could preclude release in acidic conditions, and that the drug was released from the fibers in two successive steps at neutral pH. The first step is the dissolution of the shell ES100 and the conversion of the core PL-DS into sub-micron sized particles. This frees some DS into solution, and later the remaining DS is gradually released from the PL-DS particles through diffusion. Ex vivo permeation results showed that the composite nanofibers give a more than two-fold uplift in the amount of DS passing through the colonic membrane as compared to pure DS; 74% of the transmitted drug was in the form of PL-DS particles. The new tri-axial electrospinning process developed in this work provides a platform to fabricate structural nanomaterials, and the core-shell polymer-PL nanocomposites we have produced have significant potential applications for oral colon-targeted drug delivery. STATEMENT OF SIGNIFICANCE: A modified tri-axial electrospinning is demonstrated to create a new type of core-shell pH-sensitive polymer/lipid nanocomposites, in which an electrospinnable middle fluid is exploited to support the un-spinnable outer and inner fluids. The structural nanocomposites are able to provide a colon-targeted sustained release and an enhanced permeation performance of diclofenac sodium. The developed tri-axial process can provide a platform for fabricating new structural nanomaterials with high quality. The strategy of a combined usage of polymeric excipients and phosphilipid in a core-shell format should provide new possibilities of developing novel drug delivery systems for efficacious oral administration of poorly-water soluble drugs
    corecore