1,658 research outputs found

    Application of digital interferogram evaluation techniques to the measurement of 3-D flow fields

    Get PDF
    A system for digitally evaluating interferograms, based on an image processing system connected to a host computer, was implemented. The system supports one- and two-dimensional interferogram evaluations. Interferograms are digitized, enhanced, and then segmented. The fringe coordinates are extracted, and the fringes are represented as polygonal data structures. Fringe numbering and fringe interpolation modules are implemented. The system supports editing and interactive features, as well as graphic visualization. An application of the system to the evaluation of double exposure interferograms from the transonic flow field around a helicopter blade and the reconstruction of the three dimensional flow field is given

    Reconstruction of a three-dimensional, transonic rotor flow field from holographic interferogram data

    Get PDF
    Holographic interferometry and computerized aided tomography (CAT) are used to determine the transonic velocity field of a model rotor blade in hover. A pulsed ruby laser recorded 40 interferograms with a 2 ft dia view field near the model rotor blade tip operating at a tip Mach number of 0.90. After digitizing the interferograms and extracting the fringe order functions, the data are transferred to a CAT code. The CAT code then calculates the perturbation velocity in several planes above the blade surface. The values from the holography-CAT method compare favorably with previously obtained numerical computations in most locations near the blade tip. The results demonstrate the technique's potential for three dimensional transonic rotor flow studies

    Transonic rotor flow-measurement technique using holographic interferometry

    Get PDF
    Holographic interferometry is used to record interferograms of the flow near a hovering transonic rotor blade. A pulsed ruby laser recorded 40 interferograms with a 2 ft dia. view field near the model rotor blade tip operating at a tip Mach number of 0.90. The experimental procedure is presented and example interferograms recorded in the rotor's tip path plane. In addition, a method currently being pursued to obtain quantitative flow information using computer assisted tomography (CAT) with the holographic interferogram data, is outlined

    Aeroacoustic research programs at the Army Aviation Research and Technology Activity

    Get PDF
    The Army rotorcraft aeroacoustic programs are reviewed, highlighting the theoretical and experimental progress made by Army researchers in the physical understanding of helicopter impulsive noise. The two impulsive noise sources addressed over this past decade are high-speed impulsive noise and blade-vortex interaction noise, both of which have had and will continue to have an increasing influence on Army rotorcraft design and operations. The advancements discussed are in the areas of in-flight data acquisition techniques, small-scale-model tests in wind tunnels, holographic interferometry/tomographic techniques, and the expanding capabilities of computational fluid dynamics in rotorcraft acoustic problems. Current theoretical prediction methods are compared with experimental data, and parameters that govern model scaling are established. The very successful cooperative efforts between the Army, NASA, and industry are also addresse

    Exact solution and interfacial tension of the six-vertex model with anti-periodic boundary conditions

    Get PDF
    We consider the six-vertex model with anti-periodic boundary conditions across a finite strip. The row-to-row transfer matrix is diagonalised by the `commuting transfer matrices' method. {}From the exact solution we obtain an independent derivation of the interfacial tension of the six-vertex model in the anti-ferroelectric phase. The nature of the corresponding integrable boundary condition on the XXZXXZ spin chain is also discussed.Comment: 18 pages, LaTeX with 1 PostScript figur

    Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

    Get PDF
    The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy number variation, and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low gene copy numbers of total C4, heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein alterations for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases

    Variations of tropical upper tropospheric clouds with sea surface temperature and implications for radiative effects

    Get PDF
    The variations of tropical upper tropospheric (UT) clouds with sea surface temperature (SST) are analyzed using effective cloud fraction from the Atmospheric Infrared Sounder (AIRS) on Aqua and ice water content (IWC) from the Microwave Limb Sounder (MLS) on Aura. The analyses are limited to UT clouds above 300 hPa. Our analyses do not suggest a negative correlation of tropical-mean UT cloud fraction with the cloud-weighted SST (CWT). Instead, both tropical-mean UT cloud fraction and IWC are found to increase with CWT, although their correlations with CWT are rather weak. The rate of increase of UT cloud fraction with CWT is comparable to that of precipitation, while the UT IWC and ice water path (IWP) increase more strongly with CWT. The radiative effect of UT clouds is investigated, and they are shown to provide a net warming at the top of the atmosphere. An increase of IWP with SST yields an increase of net warming that corresponds to a positive feedback, until the UT IWP exceeds a value about 50% greater than presently observed by MLS. Further increases of the UT IWP would favor the shortwave cooling effect, causing a negative feedback. Sensitivities of UT cloud forcing to the uncertainties in UT CFR and IWC measurements are discussed

    Inhibition of Renin-Angiotensin System Reverses Endothelial Dysfunction and Oxidative Stress in Estrogen Deficient Rats

    Get PDF
    BACKGROUND: Estrogen deficiency increases the cardiovascular risks in postmenopausal women. Inhibition of the renin-angiotensin system (RAS) and associated oxidative stress confers a cardiovascular protection, but the role of RAS in estrogen deficiency-related vascular dysfunction is unclear. The present study investigates whether the up-regulation of RAS and associated oxidative stress contributes to the development of endothelial dysfunction during estrogen deficiency in ovariectomized (OVX) rats. METHODOLOGY/PRINCIPAL FINDINGS: Adult female rats were ovariectomized with and without chronic treatment with valsartan and enalapril. Isometric force measurement was performed in isolated aortae. The expression of RAS components was determined by immunohistochemistry and Western blotting method while ROS accumulation in the vascular wall was evaluated by dihydroethidium fluorescence. Ovariectomy increased the expression of angiotensin-converting enzyme (ACE), angiotensin II type 1 receptor (AT(1)R), NAD(P)H oxidase, and nitrotyrosine in the rat aorta. An over-production of angiotensin II and ROS was accompanied by decreased phosphorylation of eNOS at Ser(1177) in OVX rat aortae. These pathophysiological changes were closely coupled with increased oxidative stress and decreased nitric oxide bioavailability, culminating in markedly impaired endothelium-dependent relaxations. Furthermore, endothelial dysfunction and increased oxidative stress in aortae of OVX rats were inhibited or reversed by chronic RAS inhibition with enalapril or valsartan. CONCLUSIONS/SIGNIFICANCE: The novel findings highlight a significant therapeutic benefit of RAS blockade in the treatment of endothelial dysfunction-related vascular complications in postmenopausal states
    • …
    corecore