964 research outputs found

    ACR: Attention Collaboration-based Regressor for Arbitrary Two-Hand Reconstruction

    Get PDF
    Reconstructing two hands from monocular RGB images is challenging due to frequent occlusion and mutual confusion. Existing methods mainly learn an entangled representation to encode two interacting hands, which are incredibly fragile to impaired interaction, such as truncated hands, separate hands, or external occlusion. This paper presents ACR (Attention Collaboration-based Regressor), which makes the first attempt to reconstruct hands in arbitrary scenarios. To achieve this, ACR explicitly mitigates interdependencies between hands and between parts by leveraging center and part-based attention for feature extraction. However, reducing interdependence helps release the input constraint while weakening the mutual reasoning about reconstructing the interacting hands. Thus, based on center attention, ACR also learns cross-hand prior that handle the interacting hands better. We evaluate our method on various types of hand reconstruction datasets. Our method significantly outperforms the best interacting-hand approaches on the InterHand2.6M dataset while yielding comparable performance with the state-ofthe-art single-hand methods on the FreiHand dataset. More qualitative results on in-the-wild and hand-object interaction datasets and web images/videos further demonstrate the effectiveness of our approach for arbitrary hand reconstruction

    Decoherence and Relaxation of a Quantum Bit in the Presence of Rabi Oscillations

    Full text link
    Dissipative dynamics of a quantum bit driven by a strong resonant field and interacting with a heat bath is investigated. We derive generalized Bloch equations and find modifications of the qubit's damping rates caused by Rabi oscillations. Nonequilibrium decoherence of a phase qubit inductively coupled to a LC-circuit is considered as an illustration of the general results. It is argued that recent experimental results give a clear evidence of effective suppression of decoherence in a strongly driven flux qubit.Comment: 14 pages; misprints correcte

    Theory of weak continuous measurements in a strongly driven quantum bit

    Full text link
    Continuous spectroscopic measurements of a strongly driven superconducting qubit by means of a high-quality tank circuit (a linear detector) are under study. Output functions of the detector, namely, a spectrum of voltage fluctuations and an impedance, are expressed in terms of the qubit spectrum and magnetic susceptibility. The nonequilibrium spectrum of the current fluctuations in the qubit loop and the linear response function of the driven qubit coupled to a heat bath are calculated with Bloch-Redfield and rotating wave approximations. Backaction effects of the qubit on the tank and the tank on the qubit are analyzed quantitatively. We show that the voltage spectrum of the tank provides detailed information about a frequency and a decay rate of Rabi oscillations in the qubit. It is found that both an efficiency of spectroscopic measurement and measurement-induced decoherence of the qubit demonstrate a resonant behaviour as the Rabi frequency approaches the resonant frequency of the tank. We determine conditions when the spectroscopic observation of the Rabi oscillations in the flux qubit with the tank circuit can be considered as a weak continuous quantum measurement.Comment: 28 page

    Josephson-phase qubit without tunneling

    Full text link
    We show that a complete set of one-bit gates can be realized by coupling the two logical states of a phase qubit to a third level (at higher energy) using microwave pulses. Thus, one can achieve coherent control without invoking any tunneling between the qubit levels. We propose two implementations, using rf-SQUIDs and d-wave Josephson junctions.Comment: REVTeX4, 4pp., 6 EPS figure files; N.B.: "Alec" is my first, and "Maassen van den Brink" my family name. v2: gate universality fleshed out, small fix in d-wave decoherence para, discussion expanded, two Refs. added. v3: some more Refs., a molecular example, and a few minor fixes; final, to appear in PRB Rapid

    Hydrodynamic Limit of the Boltzmann Equation with Contact Discontinuities

    Full text link
    The hydrodynamic limit for the Boltzmann equation is studied in the case when the limit system, that is, the system of Euler equations contains contact discontinuities. When suitable initial data is chosen to avoid the initial layer, we prove that there exists a unique solution to the Boltzmann equation globally in time for any given Knudsen number. And this family of solutions converge to the local Maxwellian defined by the contact discontinuity of the Euler equations uniformly away from the discontinuity as the Knudsen number ε\varepsilon tends to zero. The proof is obtained by an appropriately chosen scaling and the energy method through the micro-macro decomposition.Comment: 34 pages. submitte

    Raman light scattering study and microstructural analysis of epitaxial films of the electron-doped superconductor La_{2-x}Ce_{x}CuO_{4}

    Full text link
    We present a detailed temperature-dependent Raman light scattering study of optical phonons in molecular-beam-epitaxy-grown films of the electron-doped superconductor La_{2-x}Ce_{x}CuO_{4} close to optimal doping (x ~ 0.08, T_c = 29 K and x ~ 0.1, T_c = 27 K). The main focus of this work is a detailed characterization and microstructural analysis of the films. Based on micro-Raman spectroscopy in combination with x-ray diffraction, energy-dispersive x-ray analysis, and scanning electron microscopy, some of the observed phonon modes can be attributed to micron-sized inclusions of Cu_{2}O. In the slightly underdoped film (x ~ 0.08), both the Cu_{2}O modes and others that can be assigned to the La_{2-x}Ce_{x}CuO_{4} matrix show pronounced softening and narrowing upon cooling below T ~ T_c. Based on control measurements on commercial Cu_{2}O powders and on a comparison to prior Raman scattering studies of other high-temperature superconductors, we speculate that proximity effects at La_{2-x}Ce_{x}CuO_{4}/Cu_{2}O interfaces may be responsible for these anomalies. Experiments on the slightly overdoped La_{2-x}Ce_{x}CuO_{4} film (x ~ 0.1) did not reveal comparable phonon anomalies.Comment: 7 pages, 8 figure

    An asymptotical von-Neumann measurement strategy for solid-state qubits

    Full text link
    A measurement on a macroscopic quantum system does in general not lead to a projection of the wavefunction in the basis of the detector as predicted by von-Neumann's postulate. Hence, it is a question of fundametal interest, how the preferred basis onto which the state is projected is selected out of the macroscopic Hilbert space of the system. Detector-dominated von-Neumann measurements are also desirable for both quantum computation and verification of quantum mechanics on a macroscopic scale. The connection of these questions to the predictions of the spin-boson modelis outlined. I propose a measurement strategy, which uses the entanglement of the qubit with a weakly damped harmonic oscillator. It is shown, that the degree of entanglement controls the degree of renormalization of the qubit and identify, that this is equivalent to the degree to which the measurement is detector-dominated. This measurement very rapidly decoheres the initial state, but the thermalization is slow. The implementation in Josephson quantum bits is described and it is shown that this strategy also has practical advantages for the experimental implementation.Comment: 4 pages, 3 figures, accepted for publication as a rapid communication in Phys. Rev.

    Nonlinear Viscous Vortex Motion in Two-Dimensional Josephson-Junction Arrays

    Get PDF
    When a vortex in a two-dimensional Josephson junction array is driven by a constant external current it may move as a particle in a viscous medium. Here we study the nature of this viscous motion. We model the junctions in a square array as resistively and capacitively shunted Josephson junctions and carry out numerical calculations of the current-voltage characteristics. We find that the current-voltage characteristics in the damped regime are well described by a model with a {\bf nonlinear} viscous force of the form FD=η(y˙)y˙=A1+By˙y˙F_D=\eta(\dot y)\dot y={{A}\over {1+B\dot y}}\dot y, where y˙\dot y is the vortex velocity, η(y˙)\eta(\dot y) is the velocity dependent viscosity and AA and BB are constants for a fixed value of the Stewart-McCumber parameter. This result is found to apply also for triangular lattices in the overdamped regime. Further qualitative understanding of the nature of the nonlinear friction on the vortex motion is obtained from a graphic analysis of the microscopic vortex dynamics in the array. The consequences of having this type of nonlinear friction law are discussed and compared to previous theoretical and experimental studies.Comment: 14 pages RevTex, 9 Postscript figure

    Row-switched states in two-dimensional underdamped Josephson junction arrays

    Full text link
    When magnetic flux moves across layered or granular superconductor structures, the passage of vortices can take place along channels which develop finite voltage, while the rest of the material remains in the zero-voltage state. We present analytical studies of an example of such mixed dynamics: the row-switched (RS) states in underdamped two-dimensional Josephson arrays, driven by a uniform DC current under external magnetic field but neglecting self-fields. The governing equations are cast into a compact differential-algebraic system which describes the dynamics of an assembly of Josephson oscillators coupled through the mesh current. We carry out a formal perturbation expansion, and obtain the DC and AC spatial distributions of the junction phases and induced circulating currents. We also estimate the interval of the driving current in which a given RS state is stable. All these analytical predictions compare well with our numerics. We then combine these results to deduce the parameter region (in the damping coefficient versus magnetic field plane) where RS states can exist.Comment: latex, 48 pages, 15 figs using psfi

    Vortex reflection at boundaries of Josephson-junction arrays

    Get PDF
    We study the propagation properties of a single vortex in square Josephson-junction arrays (JJA) with free boundaries and subject to an applied dc current. We model the dynamics of the JJA by the resistively and capacitively shunted junction (RCSJ) equations. For zero Stewart-McCumber parameter βc\beta_c we find that the vortex always escapes from the array when it gets to the boundary. For βc≥2.5\beta_c\geq 2.5 and for low currents we find that the vortex escapes, while for larger currents the vortex is reflected as an antivortex at one edge and the antivortex as a vortex at the other, leading to a stationary oscillatory state and to a non-zero time-averaged voltage. The escape and the reflection of a vortex at the array edges are qualitatively explained in terms of a coarse-grained model of a vortex interacting logarithmically with its image. We also discuss the case when the free boundaries are at 4545 degrees with respect to the direction of the vortex motion. Finally, we discuss the effect of self-induced magnetic fields by taking into account the full-range inductance matrix of the array, and find qualitatively equivalent results.Comment: 14 pages RevTex, 9 Postscript figure
    • …
    corecore