4,186 research outputs found

    Protein Delivery of an Artificial Transcription Factor Restores Widespread Ube3a Expression in an Angelman Syndrome Mouse Brain.

    Get PDF
    Angelman syndrome (AS) is a neurological genetic disorder caused by loss of expression of the maternal copy of UBE3A in the brain. Due to brain-specific genetic imprinting at this locus, the paternal UBE3A is silenced by a long antisense transcript. Inhibition of the antisense transcript could lead to unsilencing of paternal UBE3A, thus providing a therapeutic approach for AS. However, widespread delivery of gene regulators to the brain remains challenging. Here, we report an engineered zinc finger-based artificial transcription factor (ATF) that, when injected i.p. or s.c., crossed the blood-brain barrier and increased Ube3a expression in the brain of an adult mouse model of AS. The factor displayed widespread distribution throughout the brain. Immunohistochemistry of both the hippocampus and cerebellum revealed an increase in Ube3a upon treatment. An ATF containing an alternative DNA-binding domain did not activate Ube3a. We believe this to be the first report of an injectable engineered zinc finger protein that can cause widespread activation of an endogenous gene in the brain. These observations have important implications for the study and treatment of AS and other neurological disorders

    Consistency between ARPES and STM measurements on SmB6_6

    Full text link
    Strongly correlated topological surface states are promising platforms for next-generation quantum applications, but they remain elusive in real materials. The correlated Kondo insulator SmB6_6 is one of the most promising candidates, with theoretically predicted heavy Dirac surface states supported by transport and scanning tunneling microscopy (STM) experiments. However, a puzzling discrepancy appears between STM and angle-resolved photoemission (ARPES) experiments on SmB6_6. Although ARPES detects spin-textured surface states, their velocity is an order of magnitude higher than expected, while the Dirac point -- the hallmark of any topological system -- can only be inferred deep within the bulk valence band. A significant challenge is that SmB6_6 lacks a natural cleavage plane, resulting in ordered surface domains limited to 10s of nanometers. Here we use STM to show that surface band bending can shift energy features by 10s of meV between domains. Starting from our STM spectra, we simulate the full spectral function as an average over multiple domains with different surface potentials. Our simulation shows excellent agreement with ARPES data, and thus resolves the apparent discrepancy between large-area measurements that average over multiple band-shifted domains and atomically-resolved measurements within a single domain

    A novel link between the proteasome pathway and the signal transduction pathway of the Bone Morphogenetic Proteins (BMPs)

    Get PDF
    BACKGROUND: The intracellular signaling events of the Bone Morphogenetic Proteins (BMPs) involve the R-Smad family members Smad1, Smad5, Smad8 and the Co-Smad, Smad4. Smads are currently considered to be DNA-binding transcriptional modulators and shown to recruit the master transcriptional co-activator CBP/p300 for transcriptional activation. SNIP1 is a recently discovered novel repressor of CBP/p300. Currently, the detailed molecular mechanisms that allow R-Smads and Co-Smad to co-operatively modulate transcription events are not fully understood. RESULTS: Here we report a novel physical and functional link between Smad1 and the 26S proteasome that contributes to Smad1- and Smad4-mediated transcriptional regulation. Smad1 forms a complex with a proteasome Ξ² subunit HsN3 and the ornithine decarboxylase antizyme (Az). The interaction is enhanced upon BMP type I receptor activation and occur prior to the incorporation of HsN3 into the mature 20S proteasome. Furthermore, BMPs trigger the translocation of Smad1, HsN3 and Az into the nucleus, where the novel CBP/p300 repressor protein SNIP1 is further recruited to Smad1/HsN3/Az complex and degraded in a Smad1-, Smad4- and Az-dependent fashion. The degradation of the CBP/p300 repressor SNIP1 is likely an essential step for Smad1-, Smad4-mediated transcriptional activation, since increased SNIP1 expression inhibits BMP-induced gene responses. CONCLUSIONS: Our studies thus add two additional important functional partners of Smad1 into the signaling web of BMPs and also suggest a novel mechanism for Smad1 and Smad4 to co-modulate transcription via regulating proteasomal degradation of CBP/p300 repressor SNIP1

    Outcomes in participants with failure of initial antibacterial therapy for hospital-acquired/ventilator-associated bacterial pneumonia prior to enrollment in the randomized, controlled phase 3 ASPECT-NP trial of ceftolozane/tazobactam versus meropenem

    Get PDF
    BACKGROUND: Ceftolozane/tazobactam, a combination antibacterial agent comprising an anti-pseudomonal cephalosporin and Ξ²-lactamase inhibitor, is approved for the treatment of hospital-acquired/ventilator-associated bacterial pneumonia (HABP/VABP) in adults. Participants in the ASPECT-NP trial received ceftolozane/tazobactam (3 g [2 g ceftolozane/1 g tazobactam] every 8 h) or meropenem (1 g every 8 h). Participants failing prior antibacterial therapy for the current HABP/VABP episode at study entry had lower 28-day all-cause mortality (ACM) rates with ceftolozane/tazobactam versus meropenem treatment. Here, we report a post hoc analysis examining this result. METHODS: The phase 3, randomized, controlled, double-blind, multicenter, noninferiority trial compared ceftolozane/tazobactam versus meropenem for treatment of adults with ventilated HABP/VABP; eligibility included those failing prior antibacterial therapy for the current HABP/VABP episode at study entry. The primary and key secondary endpoints were 28-day ACM and clinical response at test of cure (TOC), respectively. Participants who were failing prior therapy were a prospectively defined subgroup; however, subgroup analyses were not designed for noninferiority testing. The 95% CIs for treatment differences were calculated as unstratified Newcombe CIs. Post hoc analyses were performed using multivariable logistic regression analysis to determine the impact of baseline characteristics and treatment on clinical outcomes in the subgroup who were failing prior antibacterial therapy. RESULTS: In the ASPECT-NP trial, 12.8% of participants (93/726; ceftolozane/tazobactam, n = 53; meropenem, n = 40) were failing prior antibacterial therapy at study entry. In this subgroup, 28-day ACM was higher in participants who received meropenem versus ceftolozane/tazobactam (18/40 [45.0%] vs 12/53 [22.6%]; percentage difference [95% CI]: 22.4% [3.1 to 40.1]). Rates of clinical response at TOC were 26/53 [49.1%] for ceftolozane/tazobactam versus 15/40 [37.5%] for meropenem (percentage difference [95% CI]: 11.6% [- 8.6 to 30.2]). Multivariable regression analysis determined concomitant vasopressor use and treatment with meropenem were significant factors associated with risk of 28-day ACM. Adjusting for vasopressor use, the risk of dying after treatment with ceftolozane/tazobactam was approximately one-fourth the risk of dying after treatment with meropenem. CONCLUSIONS: This post hoc analysis further supports the previously demonstrated lower ACM rate for ceftolozane/tazobactam versus meropenem among participants who were failing prior therapy, despite the lack of significant differences in clinical cure rates. CLINICALTRIALS: gov registration NCT02070757 . Registered February 25, 2014, clinicaltrials.gov/ct2/show/NCT02070757

    Neural Indices of Vowel Discrimination in Monolingual and Bilingual Infants and Children

    Full text link
    Objectives: To examine maturation of neural discriminative responses to an English vowel contrast from infancy to 4 years of age and to determine how biological factors (age and sex) and an experiential factor (amount of Spanish versus English input) modulate neural discrimination of speech. Design: Event-related potential (ERP) mismatch responses (MMRs) were used as indices of discrimination of the American English vowels [Ξ΅] versus [I] in infants and children between 3 months and 47 months of age. A total of 168 longitudinal and cross-sectional data sets were collected from 98 children (Bilingual Spanish–English: 47 male and 31 female sessions; Monolingual English: 48 male and 42 female sessions). Language exposure and other language measures were collected. ERP responses were examined in an early time window (160 to 360 msec, early MMR [eMMR]) and late time window (400 to 600 msec, late MMR). Results: The eMMR became more negative with increasing age. Language experience and sex also influenced the amplitude of the eMMR. Specifically, bilingual children, especially bilingual females, showed more negative eMMR compared with monolingual children and with males. However, the subset of bilingual children with more exposure to English than Spanish compared with those with more exposure to Spanish than English (as reported by caretakers) showed similar amplitude of the eMMR to their monolingual peers. Age was the only factor that influenced the amplitude of the late MMR. More negative late MMR was observed in older children with no difference found between bilingual and monolingual groups. Conclusions: Consistent with previous studies, our findings revealed that biological factors (age and sex) and language experience modulated the amplitude of the eMMR in young children. The early negative MMR is likely to be the mismatch negativity found in older children and adults. In contrast, the late MMR amplitude was influenced only by age and may be equivalent to the Nc in infants and to the late negativity observed in some auditory passive oddball designs

    Targeted Therapy After Brain Radiotherapy for BRAF-Mutated Melanoma With Extensive Ependymal Disease With Prolonged Survival: Case Report and Review of the Literature

    Get PDF
    Melanoma brain metastasis with ependymal spread/metastases is uncommon. These cases are frequently classified together with leptomeningeal disease. However, the commonalities and differences in the underlying pathophysiology and clinical outcomes between these two types of spread are not clear. Very few reports on long term outcome and durable central nervous system (CNS) disease control have been reported in the literature. Here, we report a case of a 45 year-old Caucasian lady with BRAF-V600E mutant metastatic melanoma to the brain who had whole brain radiotherapy followed by two Gamma knife radiosurgery treatments for localized disease progression. She then developed extensive ependymal disease progression with no evidence of leptomeningeal spread. She was treated with a repeat course of whole brain radiotherapy and maintained on BRAF and MEK inhibitors with durable CNS disease control for more than a year. This study reviews the management of BRAF-V600E mutant melanoma with ependymal involvement. Management using radiation therapy with maintenance targeted therapy seems to be a reasonable approach to this challenging disease

    The variability and seasonality of the environmental reservoir of Mycobacterium bovis shed by wild European badgers

    Get PDF
    The incidence of Mycobacterium bovis, the causative agent of bovine tuberculosis, has been increasing in UK cattle herds resulting in substantial economic losses. The European badger (Meles meles) is implicated as a wildlife reservoir of infection. One likely route of transmission to cattle is through exposure to infected badger urine and faeces. The relative importance of the environment in transmission remains unknown, in part due to the lack of information on the distribution and magnitude of environmental reservoirs. Here we identify potential infection hotspots in the badger population and quantify the heterogeneity in bacterial load; with infected badgers shedding between 1 × 103β€‰βˆ’β€‰4 × 105 M. bovis cells gβˆ’1 of faeces, creating a substantial and seasonally variable environmental reservoir. Our findings highlight the potential importance of monitoring environmental reservoirs of M. bovis which may constitute a component of disease spread that is currently overlooked and yet may be responsible for a proportion of transmission amongst badgers and onwards to cattle

    Nuclear RNA sequencing of the mouse erythroid cell transcriptome.

    Get PDF
    In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq) in parallel with chromatin immunoprecipitation sequencing (ChIP-Seq) of active RNA polymerase II, we compared the nuclear transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by RNA FISH, but differ from steady-state mRNA levels measured by poly(A)-enriched RNA-seq. Highly expressed protein coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary transcripts and the identification of nuclear-retained long non-coding RNAs

    Recurrent MEIS1-NCOA2/1 fusions in a subset of low-grade spindle cell sarcomas frequently involving the genitourinary and gynecologic tracts

    Get PDF
    Sarcomas with MEIS1-NCOA2 fusions have been so far reported in 2 cases each of primitive renal sarcomas and intraosseous pelvic rhabdomyosarcomas. Their histologic spectrum, anatomic distribution, and clinical behavior remain poorly defined. In this study, we report 6 additional spindle cell sarcomas with MEIS1-NCOA2 or NCOA1 fusions that fall into the same disease spectrum with the previously reported renal sarcomas. The patients’ age range was wide (20–76 years, mean 46) and all except one were female. The tumors arose in the kidney (n=2), and one each in the uterine corpus, vagina, scrotum, and para-rectal region. The consistent morphology was that of monomorphic spindle to ovoid cells in a storiform, whorling, or solid pattern. Alternating cellularity, myxoid stroma, and microcystic changes were seen in some cases. Mitotic activity varied greatly (<1–33/10 high power fields). The immunophenotype was non-specific, with most cases expressing variable degrees of TLE1, WT1, cyclin D1, CD56, and CD10. Using various platforms of RNA-based targeted sequencing, MEIS1-NCOA2 fusions were recurrently identified in 5 cases, and a novel MEIS1-NCOA1 fusion was found in one renal tumor. The gene fusions were validated by fluorescence in situ hybridization using custom BAC probes. Of the 5 patients with available follow-up (5 months to 8 years), all experienced local recurrences, but no distant spread or death from disease. Our results expand the clinicopathologic spectrum of sarcomas with MEIS1-NCOA2/1 fusions, providing evidence of an undifferentiated spindle cell phenotype with non-specific immunoprofile and low-grade clinical behavior
    • …
    corecore