160 research outputs found

    Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate.

    Get PDF
    Pulmonary alveolar type I (AT1) cells cover more than 95% of alveolar surface and are essential for the air-blood barrier function of lungs. AT1 cells have been shown to retain developmental plasticity during alveolar regeneration. However, the development and heterogeneity of AT1 cells remain largely unknown. Here, we conducted a single-cell RNA-seq analysis to characterize postnatal AT1 cell development and identified insulin-like growth factor-binding protein 2 (Igfbp2) as a genetic marker specifically expressed in postnatal AT1 cells. The portion of AT1 cells expressing Igfbp2 increases during alveologenesis and in post pneumonectomy (PNX) newly formed alveoli. We found that the adult AT1 cell population contains both Hopx+Igfbp2+ and Hopx+Igfbp2- AT1 cells, which have distinct cell fates during alveolar regeneration. Using an Igfbp2-CreER mouse model, we demonstrate that Hopx+Igfbp2+ AT1 cells represent terminally differentiated AT1 cells that are not able to transdifferentiate into AT2 cells during post-PNX alveolar regeneration. Our study provides tools and insights that will guide future investigations into the molecular and cellular mechanism or mechanisms underlying AT1 cell fate during lung development and regeneration

    Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as <it>Arabidopsis </it>and rice. Deep sequencing technologies have facilitated identification of species-specific or lowly expressed as well as conserved or highly expressed miRNAs in plants.</p> <p>Results</p> <p>In this research, we used Solexa sequencing to discover new microRNAs in trifoliate orange (<it>Citrus trifoliata</it>) which is an important rootstock of citrus. A total of 13,106,753 reads representing 4,876,395 distinct sequences were obtained from a short RNA library generated from small RNA extracted from <it>C. trifoliata </it>flower and fruit tissues. Based on sequence similarity and hairpin structure prediction, we found that 156,639 reads representing 63 sequences from 42 highly conserved miRNA families, have perfect matches to known miRNAs. We also identified 10 novel miRNA candidates whose precursors were all potentially generated from citrus ESTs. In addition, five miRNA* sequences were also sequenced. These sequences had not been earlier described in other plant species and accumulation of the 10 novel miRNAs were confirmed by qRT-PCR analysis. Potential target genes were predicted for most conserved and novel miRNAs. Moreover, four target genes including one encoding IRX12 copper ion binding/oxidoreductase and three genes encoding NB-LRR disease resistance protein have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in <it>C. trifoliata</it>.</p> <p>Conclusion</p> <p>Deep sequencing of short RNAs from <it>C. trifoliata </it>flowers and fruits identified 10 new potential miRNAs and 42 highly conserved miRNA families, indicating that specific miRNAs exist in <it>C. trifoliata</it>. These results show that regulatory miRNAs exist in agronomically important trifoliate orange and may play an important role in citrus growth, development, and response to disease.</p

    Extreme long-lifetime self-assembled monolayer for air-stable molecular junctions

    Get PDF
    The molecular electronic devices based on self-assembled monolayer (SAM) on metal surfaces demonstrate novel electronic functions for device minimization yet are unable to realize in practical applications, due to their instability against oxidation of the sulfur-metal bond. This paper describes an alternative to the thiolate anchoring group to form stable SAMs on gold by selenides anchoring group. Because of the formation of strong selenium-gold bonds, these stable SAMs allow us to incorporate them in molecular tunnel junctions to yield extremely stable junctions for over 200 days. A detailed structural characterization supported by spectroscopy and first-principles modeling shows that the oxidation process is much slower with the selenium-gold bond than the sulfur-gold bond, and the selenium-gold bond is strong enough to avoid bond breaking even when it is eventually oxidized. This proof of concept demonstrates that the extraordinarily stable SAMs derived from sel-enides are useful for long-lived molecular electronic devices and can possibly become important in many air-stable applications involving SAMs.</p

    A meta-substrate to enhance the bandwidth of metamaterials

    Get PDF
    We propose the concept of a meta-substrate to broaden the bandwidth of left-handed metamaterials. The meta-substrate, which behaves like an inhomogeneous magnetic substrate, is composed of another kind of magnetic metamaterials like metallic closed rings. When conventional metamaterial rings are printed on this kind of meta-substrate in a proper way, the interaction of the metamaterials units can be greatly enhanced, yielding an increased bandwidth of negative permeability. An equivalent circuit analytical model is used to quantitatively characterize this phenomenon. Both numerical and experimental demonstrations are carried out, showing good agreement with theoretical predictions

    Characterization of the Resistance and Force of a Carbon Nanotube/Metal Side Contact by Nanomanipulation

    Get PDF
    A high contact resistance restricts the application of carbon nanotubes (CNTs) in fabrication of field-effect transistors (FETs). Thus, it is important to decrease the contact resistance and investigate the critical influence factors such as the contact length and contact force. This study uses nanomanipulation to characterize both the resistance and the force at a CNT/Au side-contact interface inside a scanning electron microscopy (SEM). Two-terminal CNT manipulation methods, and models for calculating the resistance and force at contact area, are proposed to guide the measurement experiments of a total resistance and a cantilever’s elastic deformation. The experimental results suggest that the contact resistance of CNT/Au interface is large (189.5 kΩ) when the van der Waals force (282.1 nN) dominates the contact force at the interface. Electron-beam-induced deposition (EBID) is then carried out to decrease the contact resistance. After depositing seven EBID points, the resistance is decreased to 7.5 kΩ, and the force increases to 1339.8 nN at least. The resistance and force at the contact area where CNT was fixed exhibit a negative exponential correlation before and after EBID. The good agreement of this correlation with previous reports validates the proposed robotic system and methods for characterizing the contact resistance and force

    Comparative analysis of the corps en cerise in several species of Laurencia (Ceramiales, Rhodophyta) from the Atlantic Ocean

    Get PDF
    Different species of Laurencia have proven to be a rich source of natural products yielding interesting bioactive halogenated secondary metabolites, such as terpenoids and acetogenins. It is shown that such compounds are accumulated in the spherical, reniform to claviform refractive inclusions called corps en cerise (CC), which are intensively osmiophilic and located mainly in the cortical cells of the thalli and also in trichoblast cells. Up to now, it was believed that CC were present only in these two kinds of cells. Recently, however, a species of Laurencia, L. marilzae, with CC in all cells of the thallus, i.e., cortical, medullary, including the pericentral and axial cells, as well as in the trichoblasts, was described from the Canary Islands, and subsequently also reported to Brazil and Mexico. Within the Laurencia complex, only Laurencia species produce CC. Since the species of Laurencia are targets of interest for the prospection of bioactive substances due to their potential antibacterial, antifungal, anticholinesterasic, antileishmanial, cytotoxic, and antioxidant activities, the present paper carries out a comparative analysis of the corps en cerise in several species of Laurencia from the Atlantic Ocean to obtain basic information that can support natural product bioprospection projects. Our results show that the number and size of the CC are constant within a species, independent of the geographical distribution, corroborating their use for taxonomical purposes to differentiate groups of species that present a lower number from those that have a higher number. In this regard, there was a tendency for the number of CC to be higher in some species of Laurencia from the Canary Islands. The presence of CC can also be used to distinguish species in which these organelles are present in all cells of the thallus from those in which CC are restricted to the cortical cells. Among the species analyzed, L. viridis displayed the most varied secondary metabolites composition, such as sesquiterpenes, diterpenes, triterpenes, all of which showed potent antiviral, cytotoxic, and antitumoral activities, including protein phosphatase type 2A (PP2A) inhibitory effects

    Chinese Expert Consensus on Critical Care Ultrasound Applications at COVID-19 Pandemic

    Get PDF
    The spread of new coronavirus (SARS-Cov-2) follows a different pattern than previous respiratory viruses, posing a serious public health risk worldwide. World Health Organization (WHO) named the disease as COVID-19 and declared it a pandemic. COVID-19 is characterized by highly contagious nature, rapid transmission, swift clinical course, profound worldwide impact, and high mortality among critically ill patients. Chest X-ray, computerized tomography (CT), and ultrasound are commonly used imaging modalities. Among them, ultrasound, due to its portability and non-invasiveness, can be easily moved to the bedside for examination at any time. In addition, with use of 4G or 5G networks, remote ultrasound consultation can also be performed, which allows ultrasound to be used in isolated medial areas. Besides, the contact surface of ultrasound probe with patients is small and easy to be disinfected. Therefore, ultrasound has gotten lots of positive feedbacks from the frontline healthcare workers, and it has played an indispensable role in the course of COVID-19 diagnosis and follow up
    corecore