3,301 research outputs found

    Structural and electrical transport properties of superconducting Au{0.7}In{0.3} films: A random array of superconductor-normal metal-superconductor (SNS) Josephson junctions

    Full text link
    The structural and superconducting properties of Au{0.7}In{0.3} films, grown by interdiffusion of alternating Au and In layers, have been studied. The films were found to consist of a uniform solid solution of Au{0.9}In{0.1}, with excess In precipitated in the form of In-rich grains of various Au-In phases (with distinct atomic compositions), including intermetallic compounds. As the temperature was lowered, these individual grains became superconducting at a particular transition temperature (Tc), determined primarily by the atomic composition of the grain, before a fully superconducting state of zero resistance was established. From the observed onset Tc, it was inferred that up to three different superconducting phases could have formed in these Au{0.7}In{0.3} films, all of which were embedded in a uniform Au{0.9}In{0.1} matrix. Among these phases, the Tc of a particular one, 0.8 K, is higher than any previously reported for the Au-In system. The electrical transport properties were studied down to low temperatures. The transport results were found to be well correlated with those of the structural studies. The present work suggests that Au{0.7}In{0.3} can be modeled as a random array of superconductor-normal metal-superconductor (SNS) Josephson junctions. The effect of disorder and the nature of the superconducting transition in these Au{0.7}In{0.3} films are discussed.Comment: 8 text pages, 10 figures in one separate PDF file, submitted to PR

    Experimental demonstration of a free space cylindrical cloak without superluminal propagation

    Full text link
    We experimentally demonstrated an alternative approach of invisibility cloaking that can combine technical advantages of all current major cloaking strategies in a unified manner and thus can solve bottlenecks of individual strategies. A broadband cylindrical invisibility cloak in free space is designed based on scattering cancellation (the approach of previous plasmonic cloaking), and implemented with anisotropic metamaterials (a fundamental property of singular-transformation cloaks). Particularly, non-superluminal propagation of electromagnetic waves, a superior advantage of non-Euclidian-transformation cloaks constructed with complex branch cuts, is inherited in this design, and thus is the reason of its relatively broad bandwidth. This demonstration provides the possibility for future practical implementation of cloaking devices at large scales in free space.Comment: 16 pages, 3 figures, accepted by Physical Review Letter

    On the Possibility of Measuring the Gravitomagnetic Clock Effect in an Earth Space-Based Experiment

    Full text link
    In this paper the effect of the post-Newtonian gravitomagnetic force on the mean longitudes ll of a pair of counter-rotating Earth artificial satellites following almost identical circular equatorial orbits is investigated. The possibility of measuring it is examined. The observable is the difference of the times required to ll in passing from 0 to 2π\pi for both senses of motion. Such gravitomagnetic time shift, which is independent of the orbital parameters of the satellites, amounts to 5×107\times 10^{-7} s for Earth; it is cumulative and should be measured after a sufficiently high number of revolutions. The major limiting factors are the unavoidable imperfect cancellation of the Keplerian periods, which yields a constraint of 102^{-2} cm in knowing the difference between the semimajor axes aa of the satellites, and the difference II of the inclinations ii of the orbital planes which, for i0.01i\sim 0.01^\circ, should be less than 0.0060.006^\circ. A pair of spacecrafts endowed with a sophisticated intersatellite tracking apparatus and drag-free control down to 109^{-9} cm s2^{-2} Hz1/2^{-{1/2}} level might allow to meet the stringent requirements posed by such a mission.Comment: LaTex2e, 22 pages, no tables, 1 figure, 38 references. Final version accepted for publication in Classical and Quantum Gravit

    Menstrual And Reproductive Factors, Hormone Use, And Risk Of Pancreatic Cancer: Analysis From The International Pancreatic Cancer Case-control Consortium (Panc4)

    Get PDF
    Objectives: We aimed to evaluate the relation between menstrual and reproductive factors, exogenous hormones, and risk of pancreatic cancer (PC). Methods: Eleven case-control studies within the International Pancreatic Cancer Case-control Consortium took part in the present study, including in total 2838 case and 4748 control women. Pooled estimates of odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated using a 2-step logistic regression model and adjusting for relevant covariates. Results: An inverse OR was observed in women who reported having had hysterectomy (ORyesvs.no, 0.78; 95% CI, 0.67-0.91), remaining significant in postmenopausal women and never-smoking women, adjusted for potential PC confounders. A mutually adjusted model with the joint effect for hormone replacement therapy (HRT) and hysterectomy showed significant inverse associations with PC in women who reported having had hysterectomy with HRT use (OR, 0.64; 95% CI, 0.48-0.84). Conclusions: Our large pooled analysis suggests that women who have had a hysterectomy may have reduced risk of PC. However, we cannot rule out that the reduced risk could be due to factors or indications for having had a hysterectomy. Further investigation of risk according to HRT use and reason for hysterectomy may be necessary

    Structure-based prediction of RNA-binding domains and RNA-binding sites and application to structural genomics targets

    Get PDF
    Mechanistic understanding of many key cellular processes often involves identification of RNA binding proteins (RBPs) and RNA binding sites in two separate steps. Here, they are predicted simultaneously by structural alignment to known protein–RNA complex structures followed by binding assessment with a DFIRE-based statistical energy function. This method achieves 98% accuracy and 91% precision for predicting RBPs and 93% accuracy and 78% precision for predicting RNA-binding amino-acid residues for a large benchmark of 212 RNA binding and 6761 non-RNA binding domains (leave-one-out cross-validation). Additional tests revealed that the method makes no false positive prediction from 311 DNA binding domains but correctly detects six domains binding with both DNA and RNA. In addition, it correctly identified 31 of 75 unbound RNA-binding domains with 92% accuracy and 65% precision for predicted binding residues and achieved 86% success rate in its application to SCOP RNA binding domain superfamily (Structural Classification Of Proteins). It further predicts 25 targets as RBPs in 2076 structural genomics targets: 20 of 25 predicted ones (80%) are putatively RNA binding. The superior performance over existing methods indicates the importance of dividing structures into domains, using a Z-score to measure relative structural similarity, and a statistical energy function to measure protein–RNA binding affinity

    Decomposition Pathways of Z-Selective Ruthenium Metathesis Catalysts

    Get PDF
    The decomposition of a Z-selective ruthenium metathesis catalyst and structurally similar analogues has been investigated utilizing X-ray crystallography and density functional theory. Isolated X-ray crystal structures suggest that recently reported C–H activated catalysts undergo decomposition via insertion of the alkylidene moiety into the chelating ruthenium–carbon bond followed by hydride elimination, which is supported by theoretical calculations. The resulting ruthenium hydride intermediates have been implicated in previously observed olefin migration, and thus lead to unwanted byproducts in cross metathesis reactions. Preventing these decomposition modes will be essential in the design of more active and selective Z-selective catalysts

    Crossover from the chiral to the standard universality classes in the conductance of a quantum wire with random hopping only

    Full text link
    The conductance of a quantum wire with off-diagonal disorder that preserves a sublattice symmetry (the random hopping problem with chiral symmetry) is considered. Transport at the band center is anomalous relative to the standard problem of Anderson localization both in the diffusive and localized regimes. In the diffusive regime, there is no weak-localization correction to the conductance and universal conductance fluctuations are twice as large as in the standard cases. Exponential localization occurs only for an even number of transmission channels in which case the localization length does not depend on whether time-reversal and spin rotation symmetry are present or not. For an odd number of channels the conductance decays algebraically. Upon moving away from the band center transport characteristics undergo a crossover to those of the standard universality classes of Anderson localization. This crossover is calculated in the diffusive regime.Comment: 22 pages, 9 figure

    SSTR2 in Nasopharyngeal Carcinoma:Relationship with Latent EBV Infection and Potential as a Therapeutic Target

    Get PDF
    SIMPLE SUMMARY: Nasopharyngeal cancer (NPC) is a malignant epithelial tumor endemic to parts of Asia and associated with infection by the Epstein–Barr virus (EBV) in these regions. The cancer is often detected at a late stage which is associated with poor outcomes (63% 5-year survival). Advances for the management of this disease have remained largely stagnant and treatment relies primarily on radiotherapy and chemotherapy, as well as surgery when indicated. Nevertheless, our understanding of its underlying biology has grown rapidly in the past two decades, laying the foundation for the development of improved therapeutics which have the potential to improve outcomes. This review offers a comprehensive, up-to-date summary of this disease, with a focus on the role of somatostatin receptor 2 (SSTR2) in NPC and how this increased knowledge may lead to improved diagnosis and management of this disease. ABSTRACT: Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor, most commonly located in the pharyngeal recess and endemic to parts of Asia. It is often detected at a late stage which is associated with poor prognosis (5-year survival rate of 63%). Treatment for this malignancy relies predominantly on radiotherapy and/or systemic chemotherapy, which can be associated with significant morbidity and impaired quality of life. In endemic regions NPC is associated with infection by Epstein–Barr virus (EBV) which was shown to upregulate the somatostatin receptor 2 (SSTR2) cell surface receptor. With recent advances in molecular techniques allowing for an improved understanding of the molecular aetiology of this disease and its relation to SSTR2 expression, we provide a comprehensive and up-to-date overview of this disease and highlight the emergence of SSTR2 as a key tumor biomarker and promising target for imaging and therapy

    Effects of knee joint angle on global and local strains within human triceps surae muscle: MRI analysis indicating in vivo myofascial force transmission between synergistic muscles

    Get PDF
    Purpose Mechanical interactions between muscles have been shown for in situ conditions. In vivo data for humans is unavailable. Global and local length changes of calf muscles were studied to test the hypothesis that local strains may occur also within muscle for which global strain equals zero. Methods For determination of globally induced strain in m. gastrocnemius in dissected human cadavers several knee joint angles were imposed, while keeping ankle joint angle constant and measuring its muscle-tendon complex length changes. In vivo local strains in both gastrocnemius and soleus muscles were calculated using MRI techniques in healthy human volunteers comparing images taken at static knee angles of 173° and 150°. Results Imposed global strains on gastrocnemius were much smaller than local strains. High distributions of strains were encountered, e.g. overall lengthened muscle contains locally lengthened, as well as shortened areas within it. Substantial strains were not limited to gastrocnemius, but were found also in synergistic soleus muscle, despite the latter muscle-tendon complex length remaining isometric (constant ankle angle: i.e. global strain = 0), as it does not cross the knee. Based on results of animal experiments this effect is ascribed to myofascial connections between these synergistic muscles. The most likely pathway is the neurovascular tract within the anterior crural compartment (i.e. the collagen reinforcements of blood vessels, lymphatics and nerves). However, direct intermuscular transmission of force may also occur via the perimysium shared between the two muscles. Conclusions Global strains imposed on muscle (joint movement) are not good estimators of in vivo local strains within it: differing in magnitude, as well as direction of length change. Substantial mechanical interaction occurs between calf muscles, which is mediated by myofascial force transmission between these synergistic muscles. This confirms conclusions of previous in situ studies in experimental animals and human patients, for in vivo conditions in healthy human subjects. © 2011 Springer-Verlag
    corecore