5,162 research outputs found

    Feasibility of Cyclodextrin-Potassium Ion Assemblies Synthesis and Its Application in Loading Bio-active Molecules

    Get PDF
    In the study, colorless cubic crystals of “green” cyclodextrin (CD)-based assemblies were synthesized and their potential to load bio-active molecules such as drugs and, separately, enzymes were investigated. Busulfan (Bu), an anti-cancer drug widely used to treat chronic myelogenous leukemia (CML), was used as a test drug while trypsin and lipase were used as model enzymes. These porous CD-K+ ion assemblies were prepared by dissolving alkali metal salts and Îł-CD in water followed by vapor diffusion in varying solvents for several days. Crystals were activated via dichloromethane dispersion and in vacuo drying. Slow vapor diffusion with ethanol was found to give the highest yield and fastest crystallization time among all the solvents used. The materials synthesized using ethanol were characterized to be cubic crystals with sizes ranging from 100–1000 ”m that are stable up to 250 C. Loading of Bu (%S) onto the CD-K+ ion assemblies and co-crystallization with trypsin (%N) were both successful, as confirmed by elemental analysis. Loading studies of Bu performed using thermogravimetric analysis (TGA) confirmed about 5 wt% loading in the porous materials

    Formulating 3-Chloropropyltriethoxysilane Modified Silica Nanoparticle Sprays as Hydrophobic Transparent Coatings onto Cotton Textiles

    Get PDF
    Cotton textiles were transformed into hydrophobic fabrics via the application of 3-chloropropylthriethoxysilane-functionalized silica nanoparticle spray coatings. Silica particles were measured to be \u3c 50 nm, as determined by dynamic light scattering (DLS). The incorporation of hexadecyltrimethylammonium bromide (HTAB), a surfactant, into the nanosilica alcohol-based sprays resulted in a suspension that was stable for at least a week. Stability and turbidity tests of samples point to smaller particle size (silica nanoparticles = 24.3 ± 8.5 nm) as the main contributor to possibly providing transparency, as evidenced when sprayed in colored (black) textiles, while still contributing to hydrophobicity/ superhydrophobicity of the cloth

    Opacity of P(MMA-MAA)-PMMA Composite Latex System with Varying MAA Concentration

    Get PDF
    Polymer composites of core-shell morphology are commonly used in the paint industry as opacity enhancer. These are usually made of block copolymer systems wherein the core is formed from a polymer that swells in the presence of a solvent and surrounded by a high glass transition polymeric shell. Thus, upon drying, the swollen regions turn into voids while leaving a hard shell. Here, composites based on poly(methyl methacrylate-butyl acrylate) [P(MMA-BuA)] (seed stage), poly(methyl methacrylate-methacrylic acid) [P(MMA-MAA)] (second stage), and poly(methyl methacrylate) [PMMA] (third stage) were synthesized through a multistage sequential emulsion polymerization and their opacity was investigated. The second stage formulation of P(MMA-MAA) system was varied by changing the methyl methacrylate (MMA): methacrylic acid (MAA) mole composition, and the dried films of these composite latexes were characterized by infrared spectroscopy (IR), differential scanning calorimetry (DSC), and atomic force microscopy (AFM). The AFM images and ammonium hydroxide (NH4 OH) swelling studies confirmed the successful incorporation of the seed (first) stage with the second and third stage polymerization with PMMA. The differences in PMAA concentrations among the second stage polymer compositions were determined from the IR spectra and glass transition temperature (Tg ) data. Investigations on the opacity and hiding power of these polymer composites were done using optical densitometry. The results show increasing absorbance, indicating increasing opacity, with increasing polymethacrylic acid (PMAA) concentration in the second stage composition

    Content Analysis of the Discussion of the Atom in General Chemistry Textbooks Using Evaluation Criteria Based on the Nature of Science and Philosophy of Chemistry

    Get PDF
    Evaluation criteria are adapted from previous textbook analyses on the nature of science (NOS) in general chemistry textbooks. These criteria are used to determine how certain NOS dimensions are mentioned and elaborated in those textbooks. Such dimensions emphasize that chemistry is (1) tentative, (2) empirical, (3) model-based, (4) inferential, (5) has technological products, (6) employs instrumentation, and (7) possesses social and societal dimensions. Three book chapters were read and evaluated: the first (on chemistry in general); the second (on atomic structure); and the sixth or seventh chapters (on the electronic structure of atoms). The relevant content in each textbook were rated using the following rubric: Satisfactory and Explicit (S, 2 points); Mention and Implicit (M, 1 point); and No Mention (N, 0 point). Silberberg (2009) has the highest score among the six textbooks with 12 points out of the maximum of 14. It was rated S for five criteria, the most among the six textbooks. Despite the presence of some N evaluations, all textbooks have mentioned some or all of the NOS dimensions formulated, resulting to M and S ratings. This study concludes that NOS dimensions are already present in various ways and varying degrees in each textbook

    Nacre tablet thickness records formation temperature in modern and fossil shells

    Get PDF
    Nacre, the iridescent outer lining of pearls and inner lining of many mollusk shells, is composed of periodic, parallel, organic sheets alternating with aragonite (CaCO_3) tablet layers. Nacre tablet thickness (TT) generates both nacre's iridescence and its remarkable resistance to fracture. Despite extensive studies on how nacre forms, the mechanisms controlling TT remain unknown, even though they determine the most conspicuous of nacre's characteristics, visible even to the naked eye. Thermodynamics predicts that temperature (T) will affect both physical and chemical components of biomineralized skeletons. The chemical composition of biominerals is well-established to record environmental parameters, and has therefore been extensively used in paleoclimate studies. The physical structure, however, has been hypothesized but never directly demonstrated to depend on the environment. Here we observe that the physical TT in nacre from modern and fossil shallow-water shells of the bivalves Pinna and Atrina correlates with T as measured by the carbonate clumped isotope thermometer. Based on the observed TT vs. T correlation, we anticipate that TT will be used as a paleothermometer, useful to estimate paleotemperature in shallow-water paleoenvironments. Here we successfully test the proposed new nacre TT thermometer on two Jurassic Pinna shells. The increase of TT with T is consistent with greater aragonite growth rate at higher T, and with greater metabolic rate at higher T. Thus, it reveals a complex, T-dependent biophysical mechanism for nacre formation

    Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair.

    Get PDF
    Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification

    Context and Crowding in Perceptual Learning on a Peripheral Contrast Discrimination Task: Context-Specificity in Contrast Learning

    Get PDF
    Perceptual learning is an improvement in sensitivity due to practice on a sensory task and is generally specific to the trained stimuli and/or tasks. The present study investigated the effect of stimulus configuration and crowding on perceptual learning in contrast discrimination in peripheral vision, and the effect of perceptual training on crowding in this task. 29 normally-sighted observers were trained to discriminate Gabor stimuli presented at 9° eccentricity with either identical or orthogonally oriented flankers with respect to the target (ISO and CROSS, respectively), or on an isolated target (CONTROL). Contrast discrimination thresholds were measured at various eccentricities and target-flanker separations before and after training in order to determine any learning transfer to untrained stimulus parameters. Perceptual learning was observed in all three training stimuli; however, greater improvement was obtained with training on ISO-oriented stimuli compared to CROSS-oriented and unflanked stimuli. This learning did not transfer to untrained stimulus configurations, eccentricities or target-flanker separations. A characteristic crowding effect was observed increasing with viewing eccentricity and decreasing with target-flanker separation before and after training in both configurations. The magnitude of crowding was reduced only at the trained eccentricity and target-flanker separation; therefore, learning for contrast discrimination and for crowding in the present study was configuration and location specific. Our findings suggest that stimulus configuration plays an important role in the magnitude of perceptual learning in contrast discrimination and suggest context-specificity in learning

    Major axes of variation in tree demography across global forests

    Get PDF
    The future trajectory of global forests is closely intertwined with tree demography, and a major fundamental goal in ecology is to understand the key mechanisms governing spatio‐temporal patterns in tree population dynamics. While previous research has made substantial progress in identifying the mechanisms individually, their relative importance among forests remains unclear mainly due to practical limitations. One approach to overcome these limitations is to group mechanisms according to their shared effects on the variability of tree vital rates and quantify patterns therein. We developed a conceptual and statistical framework (variance partitioning of Bayesian multilevel models) that attributes the variability in tree growth, mortality, and recruitment to variation in species, space, and time, and their interactions – categories we refer to as organising principles (OPs). We applied the framework to data from 21 forest plots covering more than 2.9 million trees of approximately 6500 species. We found that differences among species, the species OP, proved a major source of variability in tree vital rates, explaining 28–33% of demographic variance alone, and 14–17% in interaction with space, totalling 40–43%. Our results support the hypothesis that the range of vital rates is similar across global forests. However, the average variability among species declined with species richness, indicating that diverse forests featured smaller interspecific differences in vital rates. Moreover, decomposing the variance in vital rates into the proposed OPs showed the importance of unexplained variability, which includes individual variation, in tree demography. A focus on how demographic variance is organized in forests can facilitate the construction of more targeted models with clearer expectations of which covariates might drive a vital rate. This study therefore highlights the most promising avenues for future research, both in terms of understanding the relative contributions of groups of mechanisms to forest demography and diversity, and for improving projections of forest ecosystems
    • 

    corecore