2,971 research outputs found
Distributed Deterministic Broadcasting in Uniform-Power Ad Hoc Wireless Networks
Development of many futuristic technologies, such as MANET, VANET, iThings,
nano-devices, depend on efficient distributed communication protocols in
multi-hop ad hoc networks. A vast majority of research in this area focus on
design heuristic protocols, and analyze their performance by simulations on
networks generated randomly or obtained in practical measurements of some
(usually small-size) wireless networks. %some library. Moreover, they often
assume access to truly random sources, which is often not reasonable in case of
wireless devices. In this work we use a formal framework to study the problem
of broadcasting and its time complexity in any two dimensional Euclidean
wireless network with uniform transmission powers. For the analysis, we
consider two popular models of ad hoc networks based on the
Signal-to-Interference-and-Noise Ratio (SINR): one with opportunistic links,
and the other with randomly disturbed SINR. In the former model, we show that
one of our algorithms accomplishes broadcasting in rounds, where
is the number of nodes and is the diameter of the network. If nodes
know a priori the granularity of the network, i.e., the inverse of the
maximum transmission range over the minimum distance between any two stations,
a modification of this algorithm accomplishes broadcasting in
rounds.
Finally, we modify both algorithms to make them efficient in the latter model
with randomly disturbed SINR, with only logarithmic growth of performance.
Ours are the first provably efficient and well-scalable, under the two
models, distributed deterministic solutions for the broadcast task.Comment: arXiv admin note: substantial text overlap with arXiv:1207.673
Comparison of Structural Development and Biochemical Accumulation of Waxy and Non-waxy Wheat Caryopses
This study was conducted to compare structural development and biochemical accumulation of waxy and non-waxy wheat (NW) caryopses. The caryopses’ microstructure of the waxy wheat (WW) and NW cultivars at different developmental stages were observed under light, fluorescence, and scanning electron microscope. The results were as follows: Compared with NW,WWhad a shorter maturation duration, which was reflected in several following characteristics. Programmed cell death of the pericarp began earlier, and the chlorophyll-containing layer in the pericarp was smaller. Vacuoles in chalazal cells accumulated more tannins at different developmental stages. Starch granules and protein bodies in the endosperm showed a higher accumulation level in developing caryopses, and aleurone cells were larger in size with larger numbers of aleurone grains. An analysis of the element content indicated that the mineral elements Mg, P, K, and Ca exhibited a higher content, while the heavy elements Cr, Cd, and Pb exhibited a lower content in the aleurone layer
Out-of-equilibrium singlet-triplet Kondo effect in a single C_60 quantum dot
We have used an electromigration technique to fabricate a
single-molecule transistor (SMT). Besides describing our electromigration
procedure, we focus and present an experimental study of a single molecule
quantum dot containing an even number of electrons, revealing, for two
different samples, a clear out-of-equilibrium Kondo effect. Low temperature
magneto-transport studies are provided, which demonstrates a Zeeman splitting
of the finite bias anomaly.Comment: 6 pages, 4 figure
Rendezvous of Heterogeneous Mobile Agents in Edge-weighted Networks
We introduce a variant of the deterministic rendezvous problem for a pair of
heterogeneous agents operating in an undirected graph, which differ in the time
they require to traverse particular edges of the graph. Each agent knows the
complete topology of the graph and the initial positions of both agents. The
agent also knows its own traversal times for all of the edges of the graph, but
is unaware of the corresponding traversal times for the other agent. The goal
of the agents is to meet on an edge or a node of the graph. In this scenario,
we study the time required by the agents to meet, compared to the meeting time
in the offline scenario in which the agents have complete knowledge
about each others speed characteristics. When no additional assumptions are
made, we show that rendezvous in our model can be achieved after time in a -node graph, and that such time is essentially in some cases
the best possible. However, we prove that the rendezvous time can be reduced to
when the agents are allowed to exchange bits of
information at the start of the rendezvous process. We then show that under
some natural assumption about the traversal times of edges, the hardness of the
heterogeneous rendezvous problem can be substantially decreased, both in terms
of time required for rendezvous without communication, and the communication
complexity of achieving rendezvous in time
Ab initio many-body calculations on infinite carbon and boron-nitrogen chains
In this paper we report first-principles calculations on the ground-state
electronic structure of two infinite one-dimensional systems: (a) a chain of
carbon atoms and (b) a chain of alternating boron and nitrogen atoms. Meanfield
results were obtained using the restricted Hartree-Fock approach, while the
many-body effects were taken into account by second-order M{\o}ller-Plesset
perturbation theory and the coupled-cluster approach. The calculations were
performed using 6-31 basis sets, including the d-type polarization
functions. Both at the Hartree-Fock (HF) and the correlated levels we find that
the infinite carbon chain exhibits bond alternation with alternating single and
triple bonds, while the boron-nitrogen chain exhibits equidistant bonds. In
addition, we also performed density-functional-theory-based local density
approximation (LDA) calculations on the infinite carbon chain using the same
basis set. Our LDA results, in contradiction to our HF and correlated results,
predict a very small bond alternation. Based upon our LDA results for the
carbon chain, which are in agreement with an earlier LDA calculation
calculation [ E.J. Bylaska, J.H. Weare, and R. Kawai, Phys. Rev. B 58, R7488
(1998).], we conclude that the LDA significantly underestimates Peierls
distortion. This emphasizes that the inclusion of many-particle effects is very
important for the correct description of Peierls distortion in one-dimensional
systems.Comment: 3 figures (included). To appear in Phys. Rev.
On Hoyle-Narlikar-Wheeler mechanism of vibration energy powered magneto-dipole emission of neutron stars
We revisit the well-known Hoyle-Narlikar-Wheeler proposition that neutron
star emerging in the magnetic-flux-conserving process of core-collapse
supernova can convert the stored energy of Alfven vibrations into power of
magneto-dipole radiation. We show that the necessary requirement for the energy
conversion is the decay of internal magnetic field. In this case the loss of
vibration energy of the star causes its vibration period, equal to period of
pulsating emission, to lengthen at a rate proportional to the rate of magnetic
field decay. These prediction of the model of vibration powered neutron star
are discussed in juxtaposition with data on pulsating emission of magnetars
whose radiative activity is generally associated with the decay of ultra strong
magnetic field.Comment: Accepted for publication in Astrophysics & Space Scienc
Quantum magneto-oscillations in a two-dimensional Fermi liquid
Quantum magneto-oscillations provide a powerfull tool for quantifying
Fermi-liquid parameters of metals. In particular, the quasiparticle effective
mass and spin susceptibility are extracted from the experiment using the
Lifshitz-Kosevich formula, derived under the assumption that the properties of
the system in a non-zero magnetic field are determined uniquely by the
zero-field Fermi-liquid state. This assumption is valid in 3D but, generally
speaking, erroneous in 2D where the Lifshitz-Kosevich formula may be applied
only if the oscillations are strongly damped by thermal smearing and disorder.
In this work, the effects of interactions and disorder on the amplitude of
magneto-oscillations in 2D are studied. It is found that the effective mass
diverges logarithmically with decreasing temperature signaling a deviation from
the Fermi-liquid behavior. It is also shown that the quasiparticle lifetime due
to inelastic interactions does not enter the oscillation amplitude, although
these interactions do renormalize the effective mass. This result provides a
generalization of the Fowler-Prange theorem formulated originally for the
electron-phonon interaction.Comment: 4 pages, 1 figur
Rendezvous of Distance-aware Mobile Agents in Unknown Graphs
We study the problem of rendezvous of two mobile agents starting at distinct
locations in an unknown graph. The agents have distinct labels and walk in
synchronous steps. However the graph is unlabelled and the agents have no means
of marking the nodes of the graph and cannot communicate with or see each other
until they meet at a node. When the graph is very large we want the time to
rendezvous to be independent of the graph size and to depend only on the
initial distance between the agents and some local parameters such as the
degree of the vertices, and the size of the agent's label. It is well known
that even for simple graphs of degree , the rendezvous time can be
exponential in in the worst case. In this paper, we introduce a new
version of the rendezvous problem where the agents are equipped with a device
that measures its distance to the other agent after every step. We show that
these \emph{distance-aware} agents are able to rendezvous in any unknown graph,
in time polynomial in all the local parameters such the degree of the nodes,
the initial distance and the size of the smaller of the two agent labels . Our algorithm has a time complexity of
and we show an almost matching lower bound of
on the time complexity of any
rendezvous algorithm in our scenario. Further, this lower bound extends
existing lower bounds for the general rendezvous problem without distance
awareness
Enhancing Approximations for Regular Reachability Analysis
This paper introduces two mechanisms for computing over-approximations of
sets of reachable states, with the aim of ensuring termination of state-space
exploration. The first mechanism consists in over-approximating the automata
representing reachable sets by merging some of their states with respect to
simple syntactic criteria, or a combination of such criteria. The second
approximation mechanism consists in manipulating an auxiliary automaton when
applying a transducer representing the transition relation to an automaton
encoding the initial states. In addition, for the second mechanism we propose a
new approach to refine the approximations depending on a property of interest.
The proposals are evaluated on examples of mutual exclusion protocols
- …
