200 research outputs found

    Evolution of H9N2 influenza viruses from domestic poultry in Mainland China

    Get PDF
    AbstractH9N2 viruses have circulated in domestic poultry in Mainland China since 1994, and an inactivated vaccine has been used in chickens to control the disease since 1998. The present study analyzed 27 H9N2 avian influenza viruses that were isolated from chickens and ducks from 1996 to 2002. Infection studies indicated that most of the viruses replicate efficiently but none of them is lethal for SPF chickens. However, these viruses exhibit different phenotypes of replication in a mouse model. Five viruses, including 4 early isolates and one 2000 isolate, are not able to replicate in mice; 14 viruses replicate to moderate titers in mouse lungs and cause less than 5% weight loss, while other 8 viruses could replicate to high titers in the lungs and 7 of them induce 10–20% weight loss of the mice on day 5 after inoculation. Most of the viruses isolated after 1996 are antigenically different from the vaccine strain that is currently used in China. Three viruses isolated in central China in 1998 are resistant to adamantanes. Phylogenetic analysis revealed that all of the viruses originated from CK/BJ/1/94-like virus and formed multiple genotypes through complicated reassortment with QA/HK/G1/97-, CK/HK/G9/97-, CK/SH/F/98-, and TY/WI/66-like viruses. This study is a description of the previously uncharacterized H9N2 avian influenza viruses recently circulating in chickens and ducks in Mainland China. Our findings suggest that urgent attention should be paid to the control of H9N2 influenza viruses in animals and to the human's influenza pandemic preparedness

    A Crop Pests Image Classification Algorithm Based on Deep Convolutional Neural Network

    Get PDF
    Conventional pests image classification methods may not be accurate due to the complex farmland background, sunlight and pest gestures. To raise the accuracy, the deep convolutional neural network (DCNN), a concept from Deep Learning, was used in this study to classify crop pests image. On the ground of our experiments, in which LeNet-5 and AlexNet were used to classify pests image, we have analyzed the effects of both convolution kernel and the number of layers on the network, and redesigned the structure of convolutional neural network for crop pests. Further more, 82 common pest types have been classified, with the accuracy reaching 91%. The comparison to conventional classification methods proves that our method is not only feasible but preeminent

    HAdV-2-suppressed growth of SV40 T antigen-transformed mouse mammary epithelial cell-induced tumours in SCID mice

    Get PDF
    AbstractHuman adenovirus (HAdV) vectors are promising tools for cancer therapy, but the shortage of efficient animal models for productive HAdV infections has restricted the evaluation of systemic effects to mainly immunodeficient mice. Previously, we reported a highly efficient replication of HAdV-2 in a non-tumorigenic mouse mammary epithelial cell line, NMuMG. Here we show that HAdV-2 gene expression and progeny formation in NMuMG cells transformed with the SV40 T antigen (NMuMG-T cells) were as efficient as in the parental NMuMG cells. Injection of HAdV-2 into tumours established by NMuMG-T in SCID mice caused reduced tumour growth and signs of intratumoural lesions. HAdV-2 replicated within the NMuMG-T-established tumours, but not in interspersed host-derived tissues within the tumours. The specific infection of NMuMG-T-derived tumours was verified by the lack of viral DNA in kidney, lung or spleen although low levels of viral DNA was occasionally found in liver

    The performance of large-pitch AC-LGAD with different N+ dose

    Full text link
    AC-Coupled LGAD (AC-LGAD) is a new 4D detector developed based on the Low Gain Avalanche Diode (LGAD) technology, which can accurately measure the time and spatial information of particles. Institute of High Energy Physics (IHEP) designed a large-size AC-LGAD with a pitch of 2000 {\mu}m and AC pad of 1000 {\mu}m, and explored the effect of N+ layer dose on the spatial resolution and time resolution. The spatial resolution varied from 32.7 {\mu}m to 15.1 {\mu}m depending on N+ dose. The time resolution does not change significantly at different N+ doses, which is about 15-17 ps. AC-LGAD with a low N+ dose has a large attenuation factor and better spatial resolution. Large signal attenuation factor and low noise level are beneficial to improve the spatial resolution of the AC-LGAD sensor

    Simultaneous measurement of multiple organic tracers in fine aerosols from biomass burning and fungal spores by HPLC-MS/MS

    Get PDF
    Three monosaccharide anhydrides (MAs: levoglucosan, mannosan, and galactosan) and sugar alcohols (arabitol and mannitol) are widely used as organic tracers for source identification of aerosols emitted from biomass burning and fungal spores, respectively. In the past, these two types of organic tracer have been measured separately or conjointly using different analytical techniques, with which a number of disadvantages have been experienced during the application to environmental aerosol samples, including organic solvent involved extraction, time-consuming derivatization, or poor separation efficiency due to overlapping peaks, etc. Hence, in this study a more environment-friendly, effective and integrated extraction and analytical method has been developed for simultaneous determination of the above mentioned organic tracers in the same aerosol sample using ultrasonication and high performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The ultrasonication assisted extraction process using ultrapure water can achieve satisfactory recoveries in the range of 100.3 ± 1.3% to 108.4 ± 1.6% for these tracers. All the parameters related to LC and MS/MS have been optimized to ensure good identification and pronounced intensity for each compound. A series of rigorous validation steps have been conducted. This newly developed analytical method using ultrasonication and HPLC-MS/MS has been successfully applied to environmental aerosol samples of different pollution levels for the simultaneous measurement of the above mentioned five organic tracers from biomass burning and fungal spores

    Characterization of the response of IHEP-IME LGAD with shallow carbon to Gamma Irradiation

    Full text link
    Low Gain Avalanche Detectors (LGAD), as part of High-Granularity Timing Detector (HGTD), is crucial to reducing pileup in the upgrading to HL-LHC. Many studies have been done on the bulk damages of the LGAD. However, there's no study about the surface radiation hardness of the LGAD sensors with carbon implanted. The IHEP-IME LGAD version 3 with the shallow carbon and different interpad separations were irradiated up to 2 MGy by gamma irradiation. The performance of the IHEP-IME LGAD version 3 before and after irradiation had been tested, such as the leakage current, break-down voltage, capacitance, Vgl_{gl}, and inter-pad resistance. The results showed that apart from minor fluctuations in some samples, no significant changes concerning inter-pad separation were observed before and after irradiation. Leakage current and break-down voltage increase after irradiation, which is considered due to surface passivation; the overall inter-pad resistance are larger than $10^9\ \Omegabeforeandafterirradiation;capacitanceisfoundtobelessthan4.5pFwithaslightdropinV before and after irradiation; capacitance is found to be less than 4.5 pF with a slight drop in V_{gl}$ after irradiation. All parameters meet the requirements of HGTD, and the results indicated that IHEP-IME LGAD v3 has excellent anti-irradiation performance

    Characterisation of Spatial and Timing Resolution of IHEP AC-LGAD Strip

    Full text link
    AC-coupled LGAD(AC-LGAD) Strip is a new design of LGAD that allows high-precision detection of particle spatiotemporal information whereas reducing the density of readout electronics. For AC-LGAD Strips, there is limited research on the impact of different strip pitches on the spatiotemporal detection performance at the small amount of injected charge. The Institute of High Energy Physics has designed an AC-LGAD Strip prototype with pitches of 150 μm\mu m, 200 μm\mu m, and 250 μm\mu m. The spatial and timing resolutions of the prototype are studied through the laser Transient Current Technique (TCT) scan with different amounts of injected charge. The results show that both the spatial and timing resolution improves as the strip pitch decreases. Increases in both temporal and spatial resolutions as the amount of charge injected increases are observed. The spatial and timing resolution is better than 60 ps and 40 μm\mu m at 1 Minimum Ionizing Particle (MIP), and better than 10 ps and 5 μm\mu m at 40 MIPs. Increasing Signal-to-Noise Ratio (SNR) is the key to improving spatial and temporal resolution, whereas increasing the signal attenuation rate by reducing the gap between adjacent electrodes also helps to improve spatial resolution. The enhancements of spatial and timing resolutions by both SNR and signal attenuation rate decrease with increasing amount of MIP. This study can help design and optimize the AC-LGAD Strip detectors and readout electronics

    Impact of CRAMP-34 on Pseudomonas aeruginosa biofilms and extracellular metabolites

    Get PDF
    Biofilm is a structured community of bacteria encased within a self-produced extracellular matrix. When bacteria form biofilms, they undergo a phenotypic shift that enhances their resistance to antimicrobial agents. Consequently, inducing the transition of biofilm bacteria to the planktonic state may offer a viable approach for addressing infections associated with biofilms. Our previous study has shown that the mouse antimicrobial peptide CRAMP-34 can disperse Pseudomonas aeruginosa (P. aeruginosa) biofilm, and the potential mechanism of CRAMP-34 eradicate P. aeruginosa biofilms was also investigated by combined omics. However, changes in bacterial extracellular metabolism have not been identified. To further explore the mechanism by which CRAMP-34 disperses biofilm, this study analyzed its effects on the extracellular metabolites of biofilm cells via metabolomics. The results demonstrated that a total of 258 significantly different metabolites were detected in the untargeted metabolomics, of which 73 were downregulated and 185 were upregulated. Pathway enrichment analysis of differential metabolites revealed that metabolic pathways are mainly related to the biosynthesis and metabolism of amino acids, and it also suggested that CRAMP-34 may alter the sensitivity of biofilm bacteria to antibiotics. Subsequently, it was confirmed that the combination of CRAMP-34 with vancomycin and colistin had a synergistic effect on dispersed cells. These results, along with our previous findings, suggest that CRAMP-34 may promote the transition of PAO1 bacteria from the biofilm state to the planktonic state by upregulating the extracellular glutamate and succinate metabolism and eventually leading to the dispersal of biofilm. In addition, increased extracellular metabolites of myoinositol, palmitic acid and oleic acid may enhance the susceptibility of the dispersed bacteria to the antibiotics colistin and vancomycin. CRAMP-34 also delayed the development of bacterial resistance to colistin and ciprofloxacin. These results suggest the promising development of CRAMP-34 in combination with antibiotics as a potential candidate to provide a novel therapeutic approach for the prevention and treatment of biofilm-associated infections
    • …
    corecore