4,964 research outputs found

    Private Model Compression via Knowledge Distillation

    Full text link
    The soaring demand for intelligent mobile applications calls for deploying powerful deep neural networks (DNNs) on mobile devices. However, the outstanding performance of DNNs notoriously relies on increasingly complex models, which in turn is associated with an increase in computational expense far surpassing mobile devices' capacity. What is worse, app service providers need to collect and utilize a large volume of users' data, which contain sensitive information, to build the sophisticated DNN models. Directly deploying these models on public mobile devices presents prohibitive privacy risk. To benefit from the on-device deep learning without the capacity and privacy concerns, we design a private model compression framework RONA. Following the knowledge distillation paradigm, we jointly use hint learning, distillation learning, and self learning to train a compact and fast neural network. The knowledge distilled from the cumbersome model is adaptively bounded and carefully perturbed to enforce differential privacy. We further propose an elegant query sample selection method to reduce the number of queries and control the privacy loss. A series of empirical evaluations as well as the implementation on an Android mobile device show that RONA can not only compress cumbersome models efficiently but also provide a strong privacy guarantee. For example, on SVHN, when a meaningful (9.83,10−6)(9.83,10^{-6})-differential privacy is guaranteed, the compact model trained by RONA can obtain 20×\times compression ratio and 19×\times speed-up with merely 0.97% accuracy loss.Comment: Conference version accepted by AAAI'1

    On a new class of Finsler metrics

    Get PDF
    In this paper, the geometric meaning of (alpha,beta)-norms is made clear. On this basis, we introduce a new class of Finsler metrics called general (alpha,beta)-metrics, which are defined by a Riemannian metric and an 1-form. These metrics not only generalize original (alpha,beta)-metrics naturally, but also include some metrics structured by R. Bryant. The notion of general (alpha,beta)-metrics is one of the original ideas belongs to the first author(another one is beta-deformations intruduced in the paper "Deformations and Hilbert's Fourth Problem"). We believe that the researches on general (alpha,beta)-metrics will enrich Finsler geometry and the approaches offer references for further study. But it seems that the classical methods suitable for (alpha,beta)-metrics may not be suitable for them, the idea used in this paper, which is closely related to beta-deformations, is non-classical. Any communication or suggestion is welcome.Comment: 16 page

    Desolvation map of the i-face of phospholipase A2

    Get PDF
    AbstractThe changes in the microenvironment of the Trp-3 on the i-face of pig pancreatic IB phospholipase A2 (PLA2) provide a measure of the tight contact (Ramirez and Jain, Protein Sci. 9, 229–239, 1991) with the substrate interface during the processive interfacial turnover. Spectral changes from the single Trp-substituent at position 1, 2, 6, 10, 19, 20, 31, 53, 56 or 87 on the surface of W3F PLA2 are used to probe the Trp-environment. Based on our current understanding only the residue 87 is away from i-face, therefore all other mutants are well suited to report modest differences along the i-face. All Trp-mutants bind tightly to anionic vesicles. Only those with Trp at 1, 2 or 3 near the rim of the active site on the i-face cause significant perturbation of the catalytic functions. Most other Trp-mutants showed < 3-fold change in the interfacial processive turnover rate and the competitive inhibition by MJ33. Binding of calcium to the enzyme in the aqueous phase had modest effect on the Trp-emission intensity. However, on the binding of the enzyme to the interface the fluorescence change is large, and the rate of oxidation of the Trp-substituent with N-bromosuccinimide depends on the location of the Trp-substituent. These results show that the solvation environment of the Trp-substituents on the i-face is shielded in the enzyme bound to the interface. Additional changes are noticeable if the active site of the bound enzyme is also occupied, however, the catalytically inert zymogen of PLA2 (proPLA2) does not show such changes. Significance of these results in relation to the changes in the solvent accessibility and desolvation of the i-face of PLA2 at the interface is discussed

    Implementing Genuine Multi-Qubit Entanglement of Two-Level-System Inside a Superconducting Phase Qubit

    Full text link
    The interaction between a superconducting phase qubit and the two-level systems locating inside the Josephson tunnel barrier is shown to be described by the XY model, which is naturally used to implement the iSWAP gate. With this gate, we propose a scheme to efficiently generate genuine multi-qubit entangled states of such two-level systems, including multipartite W state and cluster states. In particularly, we show that, with the help of the phase qubit, the entanglement witness can be used to efficiently detect the produced genuine multi-qubit entangled states. Furthermore, we analyze that the proposed approach for generating multi-qubit entangled states can be used in a wide class of candidates for quantum computation.Comment: 6 page

    Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy

    Get PDF
    Ruthenium complex is an important compound group for antitumor drug research and development. NAMI-A, KP1019, TLD1433 and other ruthenium complexes have entered clinical research. In recent years, the research on ruthenium antitumor drugs has not been limited to single chemotherapy drugs; other applications of ruthenium complexes have emerged such as in combination therapy. During the development of ruthenium complexes, drug delivery forms of ruthenium antitumor drugs have also evolved from single-molecule drugs to nanodrug delivery systems. The review summarizes the following aspects: (1) ruthenium complexes from monotherapy to combination therapy, including the development of single-molecule compounds, carrier nanomedicine, and self-assembly of carrier-free nanomedicine; (2) ruthenium complexes in the process of ADME in terms of absorption, distribution, metabolism and excretion; (3) the applications of ruthenium complexes in combination therapy, including photodynamic therapy (PDT), photothermal therapy (PTT), photoactivated chemotherapy (PACT), immunotherapy, and their combined application; (4) the future prospects of ruthenium-based antitumor drugs.publishedVersio

    Assay of phospholipases A2 and their inhibitors by kinetic analysis in the scooting mode

    Get PDF
    Several cellular processes are regulated by interfacial catalysis on biomembrane surfaces. Phospholipases A2 (PLA2) are interesting not only as prototypes for interfacial catalysis, but also because they mobilize precursors for the biosynthesis of eicosanoids and platelet activating factor, and these agents ultimately control a wide range of secretory and inflammatory processes. Since PLA2 carry out their catalytic function at membrane surfaces, the kinetics of these enzymes depends on what the enzyme ‘sees’ at the interface, and thus the observed rate is profoundly influenced by the organization and dynamics of the lipidwater interface (‘quality of the interface’). In this review we elaborate the advantages of monitoring interfacial catalysis in the scooting mode, that is, under the conditions where the enzyme remains bound to vesicles for several thousand catalytic turnover cycles. Such a highly processive catalytic turnover in the scooting mode is useful for a rigorous and quantitative characterization of the kinetics of interfacial catalysis. This analysis is now extended to provide insights into designing strategy for PLA2 assays and screens for their inhibitors

    Construction of PAN-based activated carbon nanofibers for hydrogen storage under ambient pressure

    Get PDF
    Adsorption agents are an important class of solid hydrogen storage materials. Attributed to their high specific surface area and adjustable nanopore structure, activated carbon nanofibers have attracted extensive attention in the application of solid hydrogen storage. The research in this field mostly focuses on applications with a hydrogen pressure condition of 30 to 300 bar, while there have been few systematic studies on the hydrogen storage performance of these materials under ambient pressure. In this study, polyacrylonitrile-based activated carbon nanofibers were constructed by electrospinning technology and ultrasonic-assisted activation technology for the application of atmospheric hydrogen storage. Their nanopore structure was revealed to be mainly composed of micropores, and the relative contents of micropore volume and ultramicropore volume were 77.92% to 88.3% and 22.34% to 24.68%, respectively. Attributed to the synergy of rich microporous structure and surface chemical structure, the atmospheric hydrogen storage density of activated carbon nanofibers could reach 2.64 wt% at 77 K and 1 bar. After the optimization analysis of adsorption isotherm models, the Multisite-Langmuir model was found as more suitable for accurately describing the atmospheric hydrogen adsorption process of activated carbon nanofibers.Cited as: Yu, J., Lin, T., Li, J., Zhang, W., Bao, W., Zhu, B. Construction of PAN-based activated carbon nanofibers for hydrogen storage under ambient pressure. Capillarity, 2023, 6(3): 49-56. https://doi.org/10.46690/capi.2023.03.0
    • …
    corecore