1,632 research outputs found

    Mechanisms of algal biomass input enhanced microbial Hg methylation in lake sediments

    Get PDF
    Eutrophication is a major environmental concern in lake systems, impacting the ecological risks of contaminants and drinking water safety. It has long been believed that eutrophication and thus algal blooms would reduce methylmercury (MeHg) levels in water, as well as MeHg bioaccumulation and trophic transfer (e.g., by growth dilution). In this study, however, we demonstrated that algae settlement and decomposition after algal blooms increased MeHg levels in sediments (54-514% higher), as evidenced by the results from sediments in 10 major lakes in China. These could in turn raise concerns about enhanced trophic transfer of MeHg and deterioration of water quality after algal blooms, especially considering that 9 out of the 10 examined lakes also serve as drinking water sources. The enhanced microbial MeHg production in sediments could be explained by the algal organic matter (AOM)-enhanced abundances of microbial methylators as well as the input of algae-inhabited microbes into sediments, but not Hg speciation in sediments: (1) Several AOM components (e.g., aromatic proteins and soluble microbial by product-like material with generally low molecular weights), rather than the bulk AOM, played key roles in enhancing the abundances of microbial methylators. The copies of Archaea-hgcA methylation genes were 51-397% higher in algae-added sediments; thus, MeHg production was also higher. (2) Input of algal biomass-inhabited microbial methylators contributed to 2-21% of total Archaea-hgcA in the 10 lake sediments with added algal biomass. (3) However, AOM-induced changes in Hg speciation, with implications on Hg availability to microbial methylators, played a minor role in enhancing microbial Hg methylation in sediments as seen in X-ray absorption near edge structure (XANES) data. Our results suggest the need to better understand the biogeochemistry and risks of contaminants in eutrophic lakes, especially during the period of algae settlement and decomposition following algal blooms.China Postdoctoral Science Foundation 2017M622782 National Natural Science Foundation of China 41676095 41673075 Natural Science Foundation of Jiangsu Province BK20160067info:eu-repo/semantics/acceptedVersio

    Rapid automatic naming and phonological awareness deficits in preschool children with probable developmental coordination disorder

    Get PDF
    Children with developmental coordination disorder (DCD) have been reported to have a higher risk of dyslexia than children with typical development (TD). Phonological awareness (PA) and rapid automatic naming (RAN) are known to be predictive of children’s reading development. The present study examined PA and RAN in preschool children with and without probable DCD in Taiwan. In total, 704 children aged 5–6 years old from 25 preschools in Taichung City were included as participants. The probable DCD children performed more poorly than the children with TD on the PA and the RAN tests. Put in deficit terms, 22% of the children with TD, but 48% of the probable DCD children, had a single or dual PA/RAN deficit. Furthermore, it was manual dexterity that bore the unique relationship with RAN. Automatic visual perceptual-motor coordination may be the common processing component that underlies RAN and probable DCD. The early visual perceptual-motor profile of probable DCD children has not been well recognized before

    Amniotic fluid-derived mesenchymal stem cells as a novel therapeutic approach in the treatment of fulminant hepatic failure in rats

    Get PDF
    As a potential alternative treatment for terminal liver diseases, amniotic fluid derived mesenchymal stem cells (AFMSCs) have many advantages over other stem cells: avoiding much ethical controversy and decrease in both quantity and differentiation potential with age. However, the therapeutic role of AFMSC for fulminant hepatic failure (FHF) has not yet been clearly elucidated. Therefore, we investigated the reparation effects of transplanted AFMSCs in rats with FHF. AFMSCs were transplanted into injured liver via the portal vein in the rat FHF model. Therapeutic effect was evaluated after cell transfusion by histologic pathology, hepatic enzyme levels and animal survival. Cryostat sections were prepared and directly assessed for green fluorescent protein (GFP) expression and localization, and in vivo differentiation of AFMSC was confirmed by double-immunostaining analyses. Our results show that AFMSCs prevented liver failure and reduced mortality in rats with FHF. These animals also exhibited improved liver function and animals survival after injection with AFMSCs using GFP, we demonstrated that the engrafted cells and their progeny incorporated into injured livers and produced albumin. We found that AFMSCs transplantation modestly promoted the repair of FHF in rats. AFMSCs implanted in the injured liver may be a novel therapeutic approach in the treatment of FHF.Key words: Amniotic fluid-derived mesenchymal stem cells, fulminant hepatic failure, cell transplantation, treatment, hepatogenic differentiation

    Seed Dormancy, Seedling Establishment and Dynamics of the Soil Seed Bank of \u3cem\u3eStipa Bungeana\u3c/em\u3e (Poaceae) on the Loess Plateau of Northwestern China

    Get PDF
    Studying seed dormancy and its consequent effect can provide important information for vegetation restoration and management. The present study investigated seed dormancy, seedling emergence and seed survival in the soil seed bank of Stipa bungeana, a grass species used in restoration of degraded land on the Loess Plateau in northwest China. Dormancy of fresh seeds was determined by incubation of seeds over a range of temperatures in both light and dark. Seed germination was evaluated after mechanical removal of palea and lemma (hulls), chemical scarification and dry storage. Fresh and one-year-stored seeds were sown in the field, and seedling emergence was monitored weekly for 8 weeks. Furthermore, seeds were buried at different soil depths, and then retrieved every 1 or 2 months to determine seed dormancy and seed viability in the laboratory. Fresh seeds (caryopses enclosed by palea and lemma) had non-deep physiological dormancy. Removal of palea and lemma, chemical scarification, dry storage (afterripening), gibberellin (GA3) and potassium nitrate (KNO3) significantly improved germination. Dormancy was completely released by removal of the hulls, but seeds on which hulls were put back to their original position germinated to only 46%. Pretreatment of seeds with a 30% NaOH solution for 60 min increased germination from 25% to 82%. Speed of seedling emergence from fresh seeds was significantly lower than that of seeds stored for 1 year. However, final percentage of seedling emergence did not differ significantly for seeds sown at depths of 0 and 1 cm. Most fresh seeds of S. bungeana buried in the field in early July either had germinated or lost viability by September. All seeds buried at a depth of 5 cm had lost viability after 5 months, whereas 12% and 4% seeds of those sown on the soil surface were viable after 5 and 12 months, respectively

    Evolution of hot fluids in the Chingshui geothermal field inferred from crystal morphology and geochemical vein data

    Get PDF
    The Chingshui geothermal field once hosted the first geothermal power plant in Taiwan from 1981 to 1993. After a long period of inactivity, this field is attracting renewed interest to meet the need for clean energy. A 213-m length of cores (IC-21) with continuous recovery, the longest in the Chingshui geothermal field, was recovered from 600 m to 813 m below the surface in 2010. Three types of calcite crystal morphologies have been identified in the veins of the cores of well IC-21: bladed, rhombic and massive crystals. Bladed calcites are generated via degassing under boiling conditions with a precipitation temperature of ∌165 °C and calculated ÎŽ18O value of −6.8‰ to −10.2‰ VSMOW for the thermal water. Rhombic calcites grow in low concentration Ca2+ and CO32− meteoric fluids and precipitate at approximately ∌180 °C. Finally, massive calcites are characterized by co-precipitation with quartz in the mixing zone between meteoric water and magmatic or metamorphic fluids with calculated ÎŽ18O value of up to 1.5 ± 0.7‰ VSMOW. Furthermore, the scaling and hot fluids at a nearby pilot geothermal power plant confirm a meteoric origin. Based on these observations, we propose that the current orientations of the main conduits for geothermal fluids are oriented at N10°E with a dip of 70°E. This result provides the basic information needed for deploying production and injection wells in future developments of the geothermal power plant in this region

    Comparative analysis of long noncoding RNAs in angiosperms and characterization of long noncoding RNAs in response to heat stress in Chinese cabbage

    Get PDF
    Long noncoding RNAs (lncRNAs) are widely present in different species and play critical roles in response to abiotic stresses. However, the functions of lncRNAs in Chinese cabbage under heat stress remain unknown. Here, we first conducted a global comparative analysis of 247,242 lncRNAs among 37 species. The results indicated that lncRNAs were poorly conserved among different species, and only 960 lncRNAs were homologous to 524 miRNA precursors. We then carried out lncRNA sequencing for a genome-wide analysis of lncRNAs and their target genes in Chinese cabbage at different stages of heat treatment. In total, 18,253 lncRNAs were identified, of which 1229 differentially expressed (DE) lncRNAs were characterized as being heat-responsive. The ceRNA network revealed that 38 lncRNAs, 16 miRNAs, and 167 mRNAs were involved in the heat response in Chinese cabbage. Combined analysis of the cis- and trans-regulated genes indicated that the targets of DE lncRNAs were significantly enriched in the “protein processing in endoplasmic reticulum” and “plant hormone signal transduction” pathways. Furthermore, the majority of HSP and PYL genes involved in these two pathways exhibited similar expression patterns and responded to heat stress rapidly. Based on the networks of DE lncRNA-mRNAs, 29 and 22 lncRNAs were found to interact with HSP and PYL genes, respectively. Finally, the expression of several critical lncRNAs and their targets was verified by qRT-PCR. Overall, we conducted a comparative analysis of lncRNAs among 37 species and performed a comprehensive analysis of lncRNAs in Chinese cabbage. Our findings expand the knowledge of lncRNAs involved in the heat stress response in Chinese cabbage, and the identified lncRNAs provide an abundance of resources for future comparative and functional studies

    Mineral particles stimulate innate immunity through neutrophil extracellular traps containing HMGB1.

    Get PDF
    Calcium phosphate-based mineralo-organic particles form spontaneously in the body and may represent precursors of ectopic calcification. We have shown earlier that these particles induce activation of caspase-1 and secretion of IL-1ÎČ by macrophages. However, whether the particles may produce other effects on immune cells is unclear. Here, we show that these particles induce the release of neutrophil extracellular traps (NETs) in a size-dependent manner by human neutrophils. Intracellular production of reactive oxygen species is required for particle-induced NET release by neutrophils. NETs contain the high-mobility group protein B1 (HMGB1), a DNA-binding protein capable of inducing secretion of TNF-α by a monocyte/macrophage cell line and primary macrophages. HMGB1 functions as a ligand of Toll-like receptors 2 and 4 on macrophages, leading to activation of the MyD88 pathway and TNF-α production. Furthermore, HMGB1 is critical to activate the particle-induced pro-inflammatory cascade in the peritoneum of mice. These results indicate that mineral particles promote pro-inflammatory responses by engaging neutrophils and macrophages via signaling of danger signals through NETs

    Prediction of Stroke Onset Time with Combined Fast High-Resolution Magnetic Resonance Spectroscopic and Quantitative T2 Mapping

    Get PDF
    OBJECTIVE: The purpose of this work is to develop a multispectral imaging approach that combines fast high-resolution 3D magnetic resonance spectroscopic imaging (MRSI) and fast quantitative T2 mapping to capture the multifactorial biochemical changes within stroke lesions and evaluate its potentials for stroke onset time prediction. METHODS: Special imaging sequences combining fast trajectories and sparse sampling were used to obtain whole-brain maps of both neurometabolites (2.0×3.0×3.0 mm3) and quantitative T2 values (1.9×1.9×3.0 mm3) within a 9-minute scan. Participants with ischemic stroke at hyperacute (0-24h, n = 23) or acute (24h-7d, n = 33) phase were recruited in this study. Lesion N-acetylaspartate (NAA), lactate, choline, creatine, and T2 signals were compared between groups and correlated with patient symptomatic duration. Bayesian regression analyses were employed to compare the predictive models of symptomatic duration using multispectral signals. RESULTS: In both groups, increased T2 and lactate levels, as well as decreased NAA and choline levels were detected within the lesion (all p<0.001). Changes in T2, NAA, choline, and creatine signals were correlated with symptomatic duration for all patients (all p<0.005). Predictive models of stroke onset time combining signals from MRSI and T2 mapping achieved the best performance (hyperacute: R2 = 0.438; all: R2 = 0.548). CONCLUSION: The proposed multispectral imaging approach provides a combination of biomarkers that index early pathological changes after stroke in a clinical-feasible time and improves the assessment of the duration of cerebral infarction. SIGNIFICANCE: Developing accurate and efficient neuroimaging techniques to provide sensitive biomarkers for prediction of stroke onset time is of great importance for maximizing the proportion of patients eligible for therapeutic intervention. The proposed method provides a clinically feasible tool for the assessment of symptom onset time post ischemic stroke, which will help guide time-sensitive clinical management
    • 

    corecore