175 research outputs found

    Heart Angiotensin-Converting Enzyme and Angiotensin-Converting Enzyme 2 Gene Expression Associated With Male Sex and Salt-Sensitive Hypertension in the Dahl Rat

    Get PDF
    Angiotensin-converting enzyme 2 (ACE 2) in the heart including its sex dependency in the hypertensive heart, has not been much studied compared to ACE. In the present study, we used the Dahl salt-sensitive rat exposed to fructose and salt to model a hypertensive phenotype in males, females, and ovariectomized females. Blood pressure was measured by the tale-cuff technique in the conscious state. Expression of RAS-related genes ACE, ACE2, angiotensin II receptor type 1, Mas1, and CMA1 in the heart were quantified. The results revealed small but significant differences between male and female groups. The main results indicate the presence of a male preponderance for an increase in ACE and ACE2 gene expression. The results are in accordance with the role of androgens or male chromosomal complement in controlling the expression of the two ACE genes

    Evaporation boundary conditions for the R13 equations of rarefied gas dynamics

    Get PDF
    The regularized 13 moment (R13) equations are a macroscopic model for the description of rarefied gas flows in the transition regime. The equations have been shown to give meaningful results for Knudsen numbers up to about 0.5. Here, their range of applicability is extended by deriving and testing boundary conditions for evaporating and condensing interfaces. The macroscopic interface conditions are derived from the microscopic interface conditions of kinetic theory. Tests include evaporation into a half-space and evaporation/condensation of a vapor between two liquid surfaces of different temperatures. Comparison indicates that overall the R13 equations agree better with microscopic solutions than classical hydrodynamics

    Humanised transgenic mice are resistant to chronic wasting disease prions from Norwegian reindeer and moose

    Get PDF
    Chronic wasting disease (CWD) is the transmissible spongiform encephalopathy or prion disease affecting cervids. In 2016 the first cases of CWD were reported in Europe in Norwegian wild reindeer and moose. The origin and zoonotic potential of these new prion isolates remain unknown. In this study to investigate zoonotic potential we inoculated brain tissue from CWD-infected Norwegian reindeer and moose into transgenic mice overexpressing human prion protein. After prolonged post-inoculation survival periods no evidence for prion transmission was seen suggesting that the zoonotic potential of these isolates is low

    Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology

    Get PDF
    Extracellular vesicles (EVs)-particularly exosomes and microvesicles (MVs)-are attracting considerable interest in the cardiovascular field as the wide range of their functions is recognized. These capabilities include transporting regulatory molecules including different RNA species, lipids, and proteins through the extracellular space including blood and delivering these cargos to recipient cells to modify cellular activity. EVs powerfully stimulate angiogenesis, and can protect the heart against myocardial infarction. They also appear to mediate some of the paracrine effects of cells, and have therefore been proposed as a potential alternative to cell-based regenerative therapies. Moreover, EVs of different sources may be useful biomarkers of cardiovascular disease identities. However, the methods used for the detection and isolation of EVs have several limitations and vary widely between studies, leading to uncertainties regarding the exact population of EVs studied and how to interpret the data. The number of publications in the exosome and MV field has been increasing exponentially in recent years and, therefore, in this ESC Working Group Position Paper, the overall objective is to provide a set of recommendations for the analysis and translational application of EVs focussing on the diagnosis and therapy of the ischaemic heart. This should help to ensure that the data from emerging studies are robust and repeatable, and optimize the pathway towards the diagnostic and therapeutic use of EVs in clinical studies for patient benefit

    Climate Change Promotes the Emergence of Serious Disease Outbreaks of Filarioid Nematodes

    Get PDF
    Filarioid parasites represent major health hazards with important medical, veterinary, and economic implications, and considerable potential to affect the everyday lives of tens of millions of people globally (World Health Organization, 2007). Scenarios for climate change vary latitudinally and regionally and involve direct and indirect linkages for increasing temperature and the dissemination, amplification, and invasiveness of vector-borne parasites. High latitude regions are especially influenced by global climate change and thus may be prone to altered associations and dynamics for complex host-pathogen assemblages and emergence of disease with cascading effects on ecosystem structure. Although the potential for substantial ecological perturbation has been identified, few empirical observations have emanated from systems across the Holarctic. Coincidental with decades of warming, and anomalies of high temperature and humidity in the sub-Arctic region of Fennoscandia, the mosquito-borne filarioid nematode Setaria tundra is now associated with emerging epidemic disease resulting in substantial morbidity and mortality for reindeer and moose. We describe a host-parasite system that involves reindeer, arthropods, and nematodes, which may contribute as a factor to ongoing declines documented for this ungulate species across northern ecosystems. We demonstrate that mean summer temperatures exceeding 14°C drive the emergence of disease due to S. tundra. An association between climate and emergence of filarioid parasites is a challenge to ecosystem services with direct effects on public health, sustainability of free-ranging and domestic ungulates, and ultimately food security for subsistence cultures at high latitudes

    Gene Expression, Function and Ischemia Tolerance in Male and Female Rat Hearts After Sub-Toxic Levels of Angiotensin II

    Get PDF
    To examine the response to chronic high-dose angiotensin II (Ang II) and a proposed milder response in female hearts with respect to gene expression and ischemic injury. Female and male litter–matched rats were treated with 400 ng kg−1 min−1 Ang II for 14 days. Hearts were isolated, subjected to 30-min ischemia and 30-min reperfusion in combination with functional monitoring and thereafter harvested for gene expression, WB and histology. Ang II-treated hearts showed signs of non-hypertrophic remodeling and had significantly higher end diastolic pressure after reperfusion, but no significant gender difference was detected. Ang II increased expression of genes related to heart function (ANF, β-MCH, Ankrd-1, PKC-α, PKC-δ TNF-α); fibrosis (Col I-α1, Col III-α1, Fn-1, Timp1) and apoptosis (P53, Casp-3) without changing heart weight but with 68% increase in collagen content. High (sub-toxic) dose of Ang II resulted in marked heart remodeling and diastolic dysfunction after ischemia without significant myocyte hypertrophy or ventricular chamber dilatation. Although there were some gender-dependent differences in gene expression, female gender did not protect against the overall response
    corecore