110 research outputs found

    Effect of Ti-Si mixed oxide support on gold catalysts for gas-phase epoxidation of propylene

    Get PDF
    Titania-silica mixed oxides prepared by hydrolytic and one-step non-hydrolytic sol-gel routes using TICl4 and SiCl4 as precursors were employed as the gold catalyst supports for gas-phase epoxiclation of propylene in O-2 and H-2. Characterization studies of the supports and catalysts were performed by means of X-ray diffraction, ultraviolet-visible absorption spectroscopy, N-2 adsorption, and high-resolution transmission electron microscopy. The results indicated that the amorphous Ti-Si mixed oxides containing 6%-14% of Ti could be prepared by both sol-gel routes, but those by non-hydrolytic sol-gel afforded higher surface area and significant mesopores. A superior catalytic performance was obtained with the gold catalyst supported on the non-hydrolytic sol-gel Ti-Si mixed oxide containing 10% of Ti. The propylene conversion was 5.7% at the initial 60 min and 3.3% at 240 min of time on stream. The selectivity for propylene oxide was as high as 95%. The influences of aging time for the non-hydrolytic sol-gel and pH value for the Au deposition-precipitation on the performance of the Au catalyst were also discussed

    Synthesis of higher alcohols by CO hydrogenation over catalysts derived from LaCo 1-x Mn x O 3 perovskites: Effect of the partial substitution of Co by Mn

    Get PDF
    Abstract(#br)LaCo 1- x Mn x O 3 perovskites with different substitutions of Co by Mn were investigated as precursors of catalysts for the CO hydrogenation to produce higher alcohols. Characterization of LaCo 1- x Mn x O 3 perovskites revealed modifications in their structure with the incorporation of Mn into the perovskite lattice affected the structure of the catalysts by reduction prior the reaction. The presence of Mn facilitated the production of alcohols and suppressed the formation of undesirable products, i.e., methane and methanol. Quantitative analysis showed that the catalysts derived from Mn-containing perovskites favored the formation of Co 2 C under the reaction conditions. Thereby the enhanced alcohol selectivity could be explained by the increment of Co 2 C/Co 0 ratio. The results demonstrate that the catalysts originated from LaCo 1- x Mn x O 3 perovskites are stable and effective for the synthesis of alcohols by CO hydrogenation

    N configuration control of N-doped carbon for stabilizing Cu nanoparticles: The synergistic effects on oxy-carbonylation of methanol

    Get PDF
    Abstract(#br)N-doped carbons (NCs) have attracted considerable attention for their outstanding physicochemical properties, including tunable porosity, electronic features and modified surface. Here, we report the preparation of hierarchically porous NCs derived from the direct pyrolysis of ZIFs (ZIF-7 and ZIF-8) and poly– m –phenylenediamine-covered carbon black (P m PDA-C) for the stabilization of Cu nanoparticles (NPs). The configuration of N species can be effectively regulated by changing the ligand of ZIFs and pyrolysis atmosphere. A remarkable N configuration synergistic effect is observed in the oxy-carbonylation of methanol to dimethyl carbonate with molecular oxygen. The results indicate that the Cu NPs on pristine carbon have a turn over frequency (TOF) of 4.4 h −1 for the reaction, while those on NCs from ZIF-8 and ZIF-7 present TOF values as high as 17.9 h −1 and 28.5 h −1 , respectively. The extensive characterizations reveal that NCs with a nitrogen content of 2–5 wt% and a pyrrolic-/pyridinic-N molar ratio of 2–3 are vital for the performance enhancement of Cu NPs. This work shows that the stabilization and enhanced performance of active Cu NPs on NCs are realized by the rational design of precursors to generate the proper N configurations

    Effects of acidity and immiscibility of lactam-based Bronsted-acidic ionic liquids on their catalytic performance for esterification

    Get PDF
    Several lactam-based Bronsted-acidic ionic liquids with different acidities were synthesized and applied to the esterification of carboxylic acids with alcohols. High conversion and perfect selectivity were obtained under mild conditions. Among the ionic liquids investigated, those having a methyl sulfonate anion (which has weaker acidity than those with a tetrafluoroborate anion) afforded the highest activity for esterification. The results indicated that the acidity and immiscibility of Bronsted-acidic ionic liquids has a synergistic effect on their esterification performance. Furthermore, after removal of water under vacuum, such ionic liquids could be reused several times without substantial loss of activity.NSFC [20873108]; 973 program [2009CB939804]; Key Scientific Project of Fujian Province [2009HZ0002-1

    Stable and antisintering tungsten carbides with controllable active phase for selective cleavage of aryl ether C-O bonds

    Get PDF
    Transition-metal carbides are important materials in heterogeneous catalysis. It remains challenging yet attractive in nanoscience to construct the active phase of carbide catalysts in a controllable manner and keep a sintering-resistant property in redox reactions, especially hydroprocessing. In this work, an integrated strategy was presented to synthesize stable and well-defined tungsten carbide nanoparticles (NPs) by assembling the metal precursor onto carbon nanotubes (CNTs), wrapping a thin polymeric layer, and following a controlled carburization. The polymer served as a soft carbon source to modulate the metal/carbon ratio in the carbides and introduced amorphous carbons around the carbides to prevent the NPs from sintering. The as-built p-WxC/CNT displayed high stability in the hydrogenolysis of aryl ether C–O bond in guaiacol for more than 150 h. Its activity was more than two and six times higher than those prepared via typical temperature-programmed reduction with gaseous carbon (WxC/CNT-TPR) and carbothermal reduction with intrinsic carbon support (WxC/CNT-CTR), respectively. Our p-WxC/CNT catalyst also achieved high efficiency for selective cleavage of the aryl ether C–O bonds in lignin-derived aromatic ethers, including anisole, dimethoxylphenol, and diphenyl ether, with a robust lifespan

    Tandem Hydrogenolysis-Hydrogenation of Lignin-Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations.

    Get PDF
    The efficient hydrodeoxygenation (HDO) of lignin-derived oxygenates is essential but challenging owing to the inherent complexity of feedstock and the lack of effective catalytic approaches. A catalytic strategy has been developed that separates C-O hydrogenolysis and aromatic hydrogenation on different active catalysts with interoperation that can achieve high oxygen removal in lignin-derived oxygenates. The flexible use of tungsten carbide for C-O bond cleavage and a nickel catalyst with controlled particle size for arene hydrogenation enables the tunable production of cyclohexane and cyclohexanol with almost full conversion of guaiacol. Such integration of dual catalysts in close proximity enables superior HDO of bio-oils into liquid alkanes with high mass and carbon yields of 27.9 and 45.0 wt %, respectively. This finding provides a new effective strategy for practical applications

    Enhanced stability of charged dendrimer-encapsulated Pd nanoparticles in ionic liquids

    Get PDF
    Highly stable dendrimer-encapsulated Pd nanoparticles in ionic liquids were prepared for the first time by using charged PAMAM dendrimers as templates, which could maintain hydrogenation efficiency for up to at least 12 recycles

    Product tunable behavior of carbon nanotubes-supported Ni?Fe catalysts for guaiacol hydrodeoxygenation

    Get PDF
    Bimetallic Ni–Fe nanoparticles supported on carbon nanotubes (CNTs) are prepared and evaluated for the catalytic hydrodeoxygenation (HDO) of a lignin-derived model compound guaiacol. Appropriate combination of Ni and Fe affords high activity and significantly enhances selectivity to cyclohexane or phenol, whereas monometallic Ni and Fe catalysts display poor activities or selectivities. The product tunable behavior of guaiacol HDO is found to be dependent on Ni/Fe atomic ratios. Cyclohexane and phenol are the major products over Ni5–Fe1/CNT with Ni/Fe atomic ratio at 5/1 and Ni1–Fe5/CNT with Ni/Fe atomic ratio at 1/5, respectively. Characterization results confirm that Ni–Fe alloys are formed and elicit synergistic effects on the HDO performance. The selectivity-switchable performance of Ni–Fe/CNT can be assigned to the synergism between Ni domains, where H2 can be easily activated, and Fe domains, which exhibited strong oxophilicity. The bimetallic catalysts give an enhanced stability without significant sintering of metal nanoparticles, while the monometallic catalysts show obvious deactivation due to the agglomeration of metal nanoparticles. Further results reveal that the conversion of guaiacol depends on not only the chemical state but also the size of the metallic nanoparticles. The catalysts with appropriate Ni/Fe atomic ratio and smaller particle perform better hydrogenolysis of C–O bonds, resulting in high selectivity to cyclohexane or phenol

    Interfacing with silica boosts the catalysis of copper

    Get PDF
    厦门大学化学化工学院郑南峰教授团队长期致力于研究固体功能材料的表界面化学行为,在分子水平上实现对固体功能材料的化学性能的调控与优化。得益于固体表面物理化学国家重点实验室的多学科合作以及能源材料化学协同创新中心的多单位优势互补,郑南峰教授课题组通过与校内外多个课题组的密切合作,近期在功能材料的可控制备、复杂表界面结构的高分辨表征和表界面过程分子机制的深入理解等方面取得系列重要进展,相关成果近期均在Nature Communications发表。 与厦门大学傅钢、袁友珠教授以及中国科学院物理研究所谷林研究员密切合作,历时五年,在多相催化的金属-载体界面效应研究方面取得重要进展。SiO2被广泛用作工业负载型金属催化剂的载体,多被视为惰性载体,在催化过程中仅起到分散金属的作用。郑南峰教授领衔的合作研究打破这个催化领域的“定式”。他们发现了“惰性”载体SiO2与Cu之间存在可以数量级提升酯基加氢催化性能的活性界面,揭示了相关界面效应的分子作用机制,并应用于指导实用铜催化剂的制备。【Abstract】Metal-support interaction is one of the most important parameters in controlling the catalysis of supported metal catalysts. Silica, a widely used oxide support, has been rarely reported as an effective support to create active metal-support interfaces for promoting catalysis. In this work, by coating Cu microparticles with mesoporous SiO2, we discover that Cu/SiO2 interface creates an exceptional effect to promote catalytic hydrogenation of esters. Both computational and experimental studies reveal that Cu–Hδ− and SiO–Hδ+ species would be formed at the Cu–O–SiOx interface upon H2 dissociation, thus promoting the ester hydrogenation by stablizing the transition states. Based on the proposed catalytic mechanism, encapsulting copper phyllosilicate nanotubes with mesoporous silica followed by hydrogen reduction is developed as an effective method to create a practical Cu nanocatalyst with abundant Cu-O-SiOx interfaces. The catalyst exhibits the best performance in the hydrogenation of dimethyl oxalate to ethylene glycol among all reported Cu catalysts.We thank the National Key R&D Program of China (2017YFA0207302, 2017YFA0207303, 2017YFA0206801), the NNSF of China (21731005, 21420102001, 21721001, 21333008, 21373167, 21573178), and the Fundamental Research Funds for the Central Universities (20720160046) for financial support. 研究工作得到了科技部、国家自然科学基金委和教育部,中科院先导项目,国家重点研发计划,分子反应动力学国家重点实验室开放课题基金等项目的资助

    Selective methylation of toluene using CO2 and H2 to para-xylene

    Get PDF
    二甲苯(PX)是石化工业的基本有机化工原料之一,主要用于生产三大合成材料—合成树脂、合成纤维和合成橡胶。随着我国下游产业的快速发展,PX的需求量迅猛增长,进口依存度大于50%。袁友珠教授课题组提出使用CO2和H2替代甲醇作为甲苯烷基化试剂,利用CO2和H2在相对较低温度下生成的甲氧基中间体(无需经甲醇)直接与甲苯烷基化。化学化工学院2018级博士生左佳昌为论文第一作者,博士生陈伟坤、硕士生刘佳以及醇醚酯化工清洁生产国家工程实验室(厦门大学)段新平博士和叶林敏博士等参与了论文的部分研究。该研究结果已分别申请了中国发明专利(申请号201911149539.2, 2019)和国际专利(申请号PCT/CN2020/077412, 2020)。【Abstract】Toluene methylation with methanol to produce xylene has been widely investigated. A simultaneous side reaction of methanol-to-olefin over zeolites is hard to avoid, resulting in an unsatisfactory methylation efficiency. Here, CO2 and H2 replace methanol in toluene methylation over a class of ZnZrOx–ZSM-5 (ZZO-Z5) dual-functional catalysts. Results demonstrate that the reactive methylation species (H3CO*; * represents a surface species) are generated more easily by CO2 hydrogenation than by methanol dehydrogenation. Catalytic performance tests on a fixed-bed reactor show that 92.4% xylene selectivity in CO-free products and 70.8% para-xylene selectivity in xylene are obtained on each optimized catalyst. Isotope effects of H2/D2 and CO2/13CO2 indicate that xylene product is substantially generated from toluene methylation rather than disproportionation. A mechanism involving generation of reactive methylation species on ZZO by CO2 hydrogenation and migration of the methylation species to Z5 pore for the toluene methylation to form xylene is proposed.This work was supported by the National Key Research and Development Program of China (2017YFA0206801), the National Natural Science Foundation of China (21972113), and the Program for Innovative Research Team in Chinese Universities (IRT_14R31).该工作得到了国家重点研发计划(2017YFA0206801)、国家自然科学基金(21972113、91545115)和教育部创新团队(IRT_14R31)的资助
    corecore