554 research outputs found

    Image registration under conformal diffeomorphisms : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Palmerston North, New Zealand

    Get PDF
    Image registration is the process of finding an alignment between two or more images so that their appearance matches. It has been widely studied and applied to several fields, including medical imaging and biology (where it is related to morphometrics). In biology, one motivation for image registration comes from the work of Sir D'Arcy Thompson. In his book On Growth and Form he presented several examples where a grid superimposed onto a two-dimensional image of one species was smoothly deformed to suggest a transformation to an image of another species. His examples include relationships between species of fish and comparison of human skulls with higher apes. One of Thompson's points was that these deformations should be as `simple' as possible. In several of his examples, he uses what he calls an isogonal transformation, which would now be called conformal, i.e., angle-preserving. His claims of conformally-related change between species were investigated further by Petukhov, who used Thompson's grid method as well as computing the cross-ratio (which is an invariant of the Möbius group, a finite-dimensional subgroup of the group of conformal diffeomorphisms) to check whether sets of points in the images could be related by a Möbius transformation. His results suggest that there are examples of growth and evolution where a Möbius transformation cannot be ruled out. In this thesis, we investigate whether or not this is true by using image registration, rather than a point-based invariant: we develop algorithms to construct conformal transformations between images, and use them to register images by minimising the sum-of-squares distance between the pixel intensities. In this way we can see how close to conformal the image relationships are. We develop and present two algorithms for constructing the conformal transformation, one based on constrained optimisation of a set of control points, and one based on gradient flow. For the first method we consider a set of different penalty terms that aim to enforce conformality, based either on discretisations of the Cauchy-Riemann equations, or geometric principles, while in the second the conformal transformation is represented as a discrete Taylor series. The algorithms are tested on a variety of datasets, including synthetic data (i.e., the target is generated from the source using a known conformal transformation; the easiest possible case), and real images, including some that are not actually conformally related. The two methods are compared on a set of images that include Thompson's fish example, and a small dataset demonstrating the growth of a human skull. The conformal growth model does appear to be validated for the skulls, but interestingly, not for Thompson's fish

    Characterization of Sulfonated, Radiation-Induced Polystyrene-Grafted Fluorinated Base Polymer Proton Exchange Membranes

    Get PDF
    The world’s future is critically energy dependent and the concerns of the global warming caused by the present-day depleting non-renewable fossil fuels push the development of new technologies for clean, efficient, reliable, and portable power sources based on electrochemical devices such as fuel cells. The hydrophilic proton exchange membranes (PEMs) seem to be a vital component of fuel cells. Currently, the commercial perfluoro-sulfonated PEMs are inheritably very expensive and an alternative PEM must be sought after, which possess properties suitable for fuel cell applications. Rationalizing this circumstance, sulfonated membranes have been developed by graft copolymerization of styrene onto PTFE, ETFE and PVDF base polymer films using a simultaneous gamma irradiation method and their physico-chemical properties were investigated. Factors affecting the grafting yield, namely the radiation dose, styrene concentration and type of solvent have been identified. Dichloromethane solvent was found to enhance the grafting yield considerably without the formation of homopolymer, unlike methanol and toluene tested, and therefore, dichloromethane was used in the subsequent grafting of styrene (20-100% v/v) onto the base films. The PTFE-g-polystyrene, ETFE-g-polystyrene, and PVDF-g-polystyrene films of different grafting yields were sulfonated using chlorosulfonic acid (30% v/v) diluted in dichloroethane (70% v/v) at the reactor temperature of 90 oC for 4 h in order to permit sulfonic acid functional group, SO3H attachment to the phenyl group of grafted polystyrene and consequently alternative PEMs were materialized. The grafting and sulfonation yields have been interpreted in terms of conventional two-compartmental analysis that gives the degrees of grafting (DOG) and sulfonation (DOS) and in terms of new three-compartmental analysis, which assumed the membrane consists of base polymer, polystyrene, and sulfonic acid, to yield the polystyrene content (PC) and the sulfonic acid content (SC). It was found that the DOG increases with radiation dose until the maximum DOG value of 73% for ETFE-g-polystyrene, 33% for PVDF-g-polystyrene, and 30% for PTFE-g-polystyrene at 25 kGy attributed to the initiation and propagation of graft copolymerization. Upon sulfonation, it was found that the DOS increases in proportionality to the DOG for all the sulfonated membranes. The results also revealed the dependences of the SC on PC and the DOS on DOG. Moreover, the mass ratio of the SC to the sulfonated polystyrene (PC+SC) is found in the range 55-59 % for higher grafting yield of sulfonated ETFE membranes and 51-54% for low grafting yield of sulfonated PTFE and PVDF membranes independent of the PC and SC obtained. Our DOS or SC results seem to differ to some previous results which openly declared the DOS values of 100% that is in contradicting to the physical nature of sulfonation mechanism. The physico-chemical i.e. ion exchange capacity (IEC) and activation energy behaviours of the sulfonated membranes were studied as functions of DOG (PS) and DOS (SC). The IEC is proportional to the DOS or SC. The IEC values vary between 0.721 and 1.095 mmol/g at DOS between 10.0 and 18.8% (SC between 9.0 and 17.6%) for the sulfonated PTFE- membranes, between 1.361 and 1.997 mmol/g at DOS between 26.8 and 55.3% (SC between 21.1 and 35.5%) for the sulfonated ETFE membranes, and between 0.360 and 0.432 m mol/g at DOS between 12.4 and 17.1% (SC between 11.1 and 14.6%) for the sulfonated PVDF membranes. The activation energies on the other hand vary between 0.327 and 0.275 eV at DOG between 10.4 and 22.0% (PC between 8.6 and 14.9%) for the sulfonated PTFE- membranes, between 0.227 and 0.170 eV at DOG between 25.4 and 60.9% (PC between 16.0 and 24.4%) for the sulfonated ETFE membranes, and between 0.3297 and 0.289 eV at DOG between 12.6 and 17.0% (PC between 9.9 and 12.4%) for sulfonated PVDF membranes. The effects of DOG (or PS) and DOG (or SC) on the thermal properties and chemical stability were also investigated. The glass transition temperature of the grafted membranes was found to show at a value of ~115 oC. The sulfonated membranes showed a chemical stability up to a temperature of ~300 oC above to which they undergo a multi step degradation pattern due to dehydration, desulfonation, decomposition of the polystyrene and sulfonic acid in the polymer matrices. For the purpose of morphological investigations, SEM micrographs of the grafted films and sulfonated membranes were taken while the SEM micrographs of their original and grafted samples were used as references respectively. This study revealed that for the low grafting yield the grafting concentrated at the surface of the graft copolymer and when the yield increases, the styrene monomer penetrated to the bulk and for the highest grafting yield achieved, the micrographs show the grafting presence until in the middle of the base films

    The Delphi Technique

    Get PDF
    The Delphi technique is a group process used to survey and collect the opinions of experts on a particular subject. Delphi may be characterized as a method for structuring a group communication process so that the process is effective in allowing a group of individuals, as a whole, to deal with a complex problem. It has application whenever policies, plans, or ideas have to be based on informed judgment. This technique is useful where the opinions and judgments of experts and practitioners are needed but time, distance, and other factors make it unlikely or impossible for the panel to work together in the same physical location

    Enhancing statistical wind speed forecasting models : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering at Massey University, Manawatū Campus, New Zealand

    Get PDF
    In recent years, wind speed forecasting models have seen significant development and growth. In particular, hybrid models have been emerging since the last decade. Hybrid models combine two or more techniques from several categories, with each model utilizing its distinct strengths. Mainly, data-driven models that include statistical and Artificial Intelligence/Machine Learning (AI/ML) models are deployed in hybrid models for shorter forecasting time horizons (< 6hrs). Literature studies show that machine learning models have gained enormous potential owing to their accuracy and robustness. On the other hand, only a handful of studies are available on the performance enhancement of statistical models, despite the fact that hybrid models are incomplete without statistical models. To address the knowledge gap, this thesis identified the shortcomings of traditional statistical models while enhancing prediction accuracy. Three statistical models are considered for analyses: Grey Model [GM(1,1)], Markov Chain, and Holt’s Double Exponential Smoothing models. Initially, the problems that limit the forecasting models' applicability are highlighted. Such issues include negative wind speed predictions, failure of predetermined accuracy levels, non-optimal estimates, and additional computational cost with limited performance. To address these concerns, improved forecasting models are proposed considering wind speed data of Palmerston North, New Zealand. Several methodologies have been developed to improve the model performance and fulfill the necessary and sufficient conditions. These approaches include adjusting dynamic moving window, self-adaptive state categorization algorithm, a similar approach to the leave-one-out method, and mixed initialization method. Keeping in view the application of the hybrid methods, novel MODWT-ARIMA-Markov and AGO-HDES models are further proposed as secondary objectives. Also, a comprehensive analysis is presented by comparing sixteen models from three categories, each for four case studies, three rolling windows, and three forecasting horizons. Overall, the improved models showed higher accuracy than their counter traditional models. Finally, the future directions are highlighted that need subsequent research to improve forecasting performance further

    Modeling and Characterization of Metal/SiC Interface for Power Device Application

    Get PDF
    Silicon carbide is a wide band-gap semiconductor widely considered to be an excellent material for the fabrication of power devices able to operate in extreme environmental conditions. Its superior properties such as wide energy bandgap, high hardness, chemical inertness, high electrical field breakdown strength and high thermal conductivity enable electronic devices, based on it, to operate at high temperatures, high voltages and high frequencies and make it an attractive semiconducting material for the power electronics industry. Since 1999 a number of electronic devices based on silicon carbide are commercially available such as Schottky barrier diodes with voltage rating of 300 - 1700 V (as of 2011) which often show non-ideal electrical behavior. Non-ideal electrical behavior is manifested in the abnormal current-voltage characteristics and greater than unity ideality factors. Various theories exist as to the origin of these non-idealities some attribute them to different conduction mechanisms such as generation-recombination and edge-related currents and others to the inhomogeneous Schottky barrier. We have considered the approach, taken by Tung, which can explain all the non-ideal behaviors with thermionic emission theory alone by assuming the Schottky barrier height to be inhomogeneous. Inhomogeneous Schottky barrier implies spatially varying isolated low barrier height regions existing alongside a homogeneous high Schottky barrier. These regions are supposed to interact, in case of being situated together, resulting in the region with low barrier height to be pinched-off. If the pinch-off occurs the low barrier height region (or patch depending on the shape) has a Schottky barrier height equal to the 'saddle point potential' in front of that patch or low barrier region. Whole Schottky barrier is assumed to be composed of numerous such low barrier height patches. These patches are considered to be embedded into the high background Schottky barrier and define the overall current transport through the Schottky barrier diode. A similar model is the parallel conduction model presented by D. Defives et al. which instead of considering the Schottky barrier to be composed of various small patches, divides the Schottky barrier into two major parts each with different Schottky barrier height and both existing simultaneously within one Schottky barrier diode. Though accurate to some extent, this model considers the two Schottky barrier heights to be electrically independent of each other; which is not true in all situations. After applying Tung's theoretical model it was possible to extract nearly correct value of Richardson constant for the Schottky diodes with titanium and molybdenum Schottky contacts on 4H silicon carbide. It was also possible to fit the experimental data correctly with Tung's theoretical model. Note: The diodes used in this research work were fabricated during a research project involving Vishay and Politecnico di Torino

    Space-filling, multi-fractal, localized thermal spikes in silicon, germanium and zinc oxide

    Full text link
    The mechanism responsible for the emission of clusters from heavy ion irradiated solids is proposed to be thermal spikes. Collision cascade-based theories describe atomic sputtering but cannot explain the consistently observed experimental evidence for significant cluster emission. Statistical thermodynamic arguments for thermal spikes are employed here for qualitative and quantitative estimation of the thermal spike-induced cluster emission from silicon, germanium and zinc oxide. The evolving cascades and spikes in elemental and molecular semiconducting solids are shown to have fractal characteristics. Power law potential is used to calculate the fractal dimension.The fractal dimension is shown to be dependent upon the exponent of the power law interatomic potential. Each irradiating ion has the probability of initiating a space-filling, multi-fractal thermal spike that may sublime a localized region near the surface by emitting clusters in relative ratios that depend upon the energies of formation of respective surface vacancies.Comment: 16 pages, 6 figure

    Cost-Effective and Energy-Efficient Techniques for Underwater Acoustic Communication Modems

    Get PDF
    Finally, the modem developed has been tested experimentally in laboratory (aquatic environment) showing that can communicates at different data rates (100..1200 bps) compared to state-of-the-art research modems. The software used include LabVIEW, MATLAB, Simulink, and Multisim (to test the electronic circuit built) has been employed.Underwater wireless sensor networks (UWSNs) are widely used in many applications related to ecosystem monitoring, and many more fields. Due to the absorption of electromagnetic waves in water and line-of-sight communication of optical waves, acoustic waves are the most suitable medium of communication in underwater environments. Underwater acoustic modem (UAM) is responsible for the transmission and reception of acoustic signals in an aquatic channel. Commercial modems may communicate at longer distances with reliability, but they are expensive and less power efficient. Research modems are designed by using a digital-signal-processor (DSP is expensive) and field-programmable-gate-array (FPGA is high power consuming device). In addition to, the use of a microcontroller is also a common practice (which is less expensive) but provides limited computational power. Hence, there is a need for a cost-effective and energy-efficient UAM to be used in budget limited applications. In this thesis different objectives are proposed. First, to identify the limitations of state-of-the-art commercial and research UAMs through a comprehensive survey. The second contribution has been the design of a low-cost acoustic modem for short-range underwater communications by using a single board computer (Raspberry-Pi), and a microcontroller (Atmega328P). The modulator, demodulator and amplifiers are designed with discrete components to reduce the overall cost. The third contribution is to design a web based underwater acoustic communication testbed along with a simulation platform (with underwater channel and sound propagation models), for testing modems. The fourth contribution is to integrate in a single module two important modules present in UAMs: the PSK modulator and the power amplifier

    Attitude Toward Democracy In Pakistan: Secondary School Teachers Perceptions

    Get PDF
    The study aimed at exploring the public sector secondary school teachers’ perceptions for development of democratic values and strategies to improve the democratic system and attitudes toward democracy. Sixty secondary school teachers were selected as a sample. The qualitative data in the form of interview responses were collected to explore teachers’ perceptions about democracy, problems in the smooth running of democracy and remedies to these problems. Five-point Likert-type attitude toward democracy scale (ATDS) was developped to assess the attitude of secondary school teachers toward democracy. The data were analysed by applying one sample t-test.  The study provide discussion at concusions drawn about democratic values and attitude of teachers toward democracy
    corecore