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Abstract

Image registration is the process of finding an alignment between two or more images

so that their appearance matches. It has been widely studied and applied to several

fields, including medical imaging and biology (where it is related to morphometrics).

In biology, one motivation for image registration comes from the work of Sir D’Arcy

Thompson. In his book On Growth and Form he presented several examples where a

grid superimposed onto a two-dimensional image of one species was smoothly deformed

to suggest a transformation to an image of another species. His examples include

relationships between species of fish and comparison of human skulls with higher apes.

One of Thompson’s points was that these deformations should be as ‘simple’ as pos-

sible. In several of his examples, he uses what he calls an isogonal transformation, which

would now be called conformal, i.e., angle-preserving. His claims of conformally-related

change between species were investigated further by Petukhov, who used Thompson’s

grid method as well as computing the cross-ratio (which is an invariant of the Möbius

group, a finite-dimensional subgroup of the group of conformal diffeomorphisms) to

check whether sets of points in the images could be related by a Möbius transforma-

tion. His results suggest that there are examples of growth and evolution where a

Möbius transformation cannot be ruled out. In this thesis, we investigate whether or

not this is true by using image registration, rather than a point-based invariant: we

develop algorithms to construct conformal transformations between images, and use

them to register images by minimising the sum-of-squares distance between the pixel

intensities. In this way we can see how close to conformal the image relationships are.

We develop and present two algorithms for constructing the conformal transforma-

tion, one based on constrained optimisation of a set of control points, and one based

on gradient flow. For the first method we consider a set of different penalty terms that

aim to enforce conformality, based either on discretisations of the Cauchy-Riemann

equations, or geometric principles, while in the second the conformal transformation

is represented as a discrete Taylor series. The algorithms are tested on a variety of

datasets, including synthetic data (i.e., the target is generated from the source using a

known conformal transformation; the easiest possible case), and real images, including

some that are not actually conformally related. The two methods are compared on a

set of images that include Thompson’s fish example, and a small dataset demonstrating

the growth of a human skull. The conformal growth model does appear to be validated

for the skulls, but interestingly, not for Thompson’s fish.




