201 research outputs found

    Applications of Reissner's principle to structural dynamics

    Get PDF
    The analysis and prediction of the dynamic behaviour of s7ructural components plays an important role in modern engineering design. :n this work, the so-called "mixed" finite element models based on Reissnen's variational principle are applied to the solution of free and forced vibration problems, for beam and :late structures. The mixed beam models are obtained by using elements of various shape functions ranging from simple linear to complex cubic and quadratic functions. The elements were in general capable of predicting the natural frequencies and dynamic responses with good accuracy. An isoparametric quadrilateral element with 8-nodes was developed for application to thin plate problems. The element has 32 degrees of freedom (one deflection, two bending and one twisting moment per node) which is suitable for discretization of plates with arbitrary geometry. A linear isoparametric element and two non-conforming displacement elements (4-node and 8-node quadrilateral) were extended to the solution of dynamic problems. An auto-mesh generation program was used to facilitate the preparation of input data required by the 8-node quadrilateral elements of mixed and displacement type. Numerical examples were solved using both the mixed beam and plate elements for predicting a structure's natural frequencies and dynamic response to a variety of forcing functions. The solutions were compared with the available analytical and displacement model solutions. The mixed elements developed have been found to have significant advantages over the conventional displacement elements in the solution of plate type problems. A dramatic saving in computational time is possible without any loss in solution accuracy. With beam type problems, there appears to be no significant advantages in using mixed models

    A unified data flow model for fault tolerant computers

    Get PDF
    The Dataflow Simulation System (DFSS) at USL was used as the medium on which a functional simulaton of sIFT was produced. DFSS is written in PL/I and is supported by MULTICS. Within the simulation, all the interprocessor communication, fault simulation, system state data, and monitoring were implemented in dataflow and supported directly by DFSS. The actual processor level computation was carried out by the SIFT code in PASCAL. The interface between DFSS in PL/I and the SIFT code in PASCAL was supported under a mechanism in DFSS called a Node Realization Module (NRM)

    Novel Approach to Repairing a Traumatic Aortic Arch Pseudoaneurysm Following a Fall.

    Get PDF
    Traumatic pseudoaneurysms of the aortic arch are often treated with surgical repair regardless of the lesion size or age. The authors report a simple, less invasive surgical repair in a patient who sustained blunt aortic injury following a fall

    Optimal B-spline Mapping of Flow Imaging Data for Imposing Patient-specific Velocity Profiles in Computational Hemodynamics.

    Get PDF
    OBJECTIVE: We propose a novel method to map patient-specific blood velocity profiles obtained from imaging data such as 2D flow MRI or 3D colour Doppler ultrasound) to geometric vascular models suitable to perform CFD simulations of haemodynamics. We describe the implementation and utilisation of the method within an open-source computational hemodynamics simulation software (CRIMSON). METHODS: The proposed method establishes point-wise correspondences between the contour of a fixed geometric model and time-varying contours containing the velocity image data, from which a continuous, smooth and cyclic deformation field is calculated. Our methodology is validated using synthetic data, and demonstrated using two different in-vivo aortic velocity datasets: a healthy subject with normal tricuspid valve and a patient with bicuspid aortic valve. RESULTS: We compare our method with the state-of-the-art Schwarz-Christoffel method, in terms of preservation of velocities and execution time. Our method is as accurate as the Schwarz-Christoffel method, while being over 8 times faster. CONCLUSIONS: Our mapping method can accurately preserve either the flow rate or the velocity field through the surface, and can cope with inconsistencies in motion and contour shape. SIGNIFICANCE: The proposed method and its integration into the CRIMSON software enable a streamlined approach towards incorporating more patient-specific data in blood flow simulations

    Two-Tone Optomechanical Instability and Its Fundamental Implications for Backaction-Evading Measurements

    Get PDF
    While quantum mechanics imposes a fundamental limit on the precision of interferometric measurements of mechanical motion due to measurement backaction, the nonlinear nature of the coupling also leads to parametric instabilities that place practical limits on the sensitivity by limiting the power in the interferometer. Such instabilities have been extensively studied in the context of gravitational wave detectors, and their presence has recently been reported in Advanced LIGO. Here, we observe experimentally and describe theoretically a new type of optomechanical instability that arises in two-tone backaction-evading (BAE) measurements, designed to overcome the standard quantum limit, and demonstrate the effect in the optical domain with a photonic crystal nanobeam, and in the microwave domain with a micromechanical oscillator coupled to a microwave resonator. In contrast to the well-known oscillatory parametric instability that occurs in single-tone, blue-detuned pumping, which is characterized by a vanishing effective mechanical damping, the parametric instability in balanced two-tone optomechanics is exponential, and is a result of small detuning errors in the two pump frequencies. Its origin can be understood in a rotating frame as the vanishing of the effective mechanical frequency due to an optical spring effect. Counterintuitively, the instability occurs even in the presence of perfectly balanced intracavity fields, and can occur for both signs of detuning. We find excellent quantitative agreement with our theoretical predictions. Since the constraints on tuning accuracy become stricter with increasing probe power, it imposes a fundamental limitation on BAE measurements, as well as other two-tone schemes. In addition to introducing a new limitation in two-tone BAE measurements, the results also introduce a new type of nonlinear dynamics in cavity optomechanics

    Fate of the Aortic Arch Following Surgery on Aortic Root and Ascending Aorta in Bicuspid Aortic Valve.

    Get PDF
    BACKGROUND: Recent guidelines support more aggressive surgery for aneurysms of the ascending aorta and root in patients with bicuspid aortic valve. However, the fate of the arch after surgery of the root and ascending aorta is unknown. We set out to assess outcomes following root and ascending aortic surgery and subsequent growth of the arch. METHODS: Between 2005 and 2016, 536 consecutive patients underwent surgery for aneurysm of the root and ascending aorta. 168 had bicuspid aortic valve. Patients with dissection were excluded. Arch diameter was measured before and after surgery, at six months and then annually. RESULTS: Of 168 patients, 127 (75.6%) had aortic root replacement and 41 (24.4%) had ascending replacement. Mean age was 57±12.8 years, 82.7% were males and five operations were performed during pregnancy. There was one (0.6%) hospital death. One (0.6%) patient had a stroke and one (0.6%) had re-sternotomy for bleeding. Median ICU and hospital stays were 1 and 6 days respectively. Follow-up was complete for 94% at a median of 5.9 years (1-139 months). Aortic arch diameter was 2.9 cm preoperatively and 3.0 cm at follow-up. There was 97% freedom from reoperation and none of the patients required surgery on the arch. CONCLUSIONS: Prophylactic arch replacement during aortic root and ascending aortic surgery in patients with bicuspid aortic valve is not supported. Our data does not support long term surveillance of the rest of the aorta in this population

    In Vitro and in Vivo Effectiveness of Carvacrol, Thymol and Linalool against Leishmania infantum

    Get PDF
    Background: One of the most important causative agents of visceral leishmaniasis (VL) is Leishmania infantum, which is mainly spread by Phlebotomus and Lutzomyia sandflies in the Old and New World, respectively. Novel and effective drugs to manage this neglected vector-borne disease are urgently required. In this study, we evaluated the toxicity of carvacrol, thymol and linalool, three common essential oil constituents, on amastigotes and promastigotes of L. infantum. Methods: in vitro experiments were performed by 24 h MTT assay. Carvacrol, thymol and linalool at concentrations ranging from 1.3 to 10 µg/mL were tested on promastigotes of L. infantum. For in vivo test, two groups of hamsters (Mesocricetus auratus) received 100 mg/kg of body weight/day of carvacrol and thymol as intraperitoneal injection on day 7 post-infection, followed by a 48 h later injection. The third group was treated with the glucantime as standard drug (500 mg/kg) and the last group (control) just received normal saline. On the 16th day, the number of parasites and histopathological changes in liver and spleen were investigated. Results: 24 h MTT assay showed promising antileishmanial activity of thymol and carvacrol, with IC50 values of 7.2 (48 µM) and 9.8 µg/mL (65 µM), respectively. Linalool at all concentrations did not affect L. infantum promastigote viability. In vivo toxicity data of carvacrol and thymol showed that the former at 100 mg/kg was the safest and most effective treatment with little side effects on the liver. Conclusions: Overall, thymol and carvacrol are highly promising candidates for the development of effective and safe drugs in the fight against VL

    C/EBP beta-LIP induces cancer-type metabolic reprogramming by regulating the let-7/LIN28B circuit in mice

    Get PDF
    The transcription factors LAP1, LAP2 and LIP are derived from the Cebpb-mRNA through the use of alternative start codons. High LIP expression has been associated with human cancer and increased cancer incidence in mice. However, how LIP contributes to cellular transformation is poorly understood. Here we present that LIP induces aerobic glycolysis and mitochondrial respiration reminiscent of cancer metabolism. We show that LIP-induced metabolic programming is dependent on the RNA-binding protein LIN28B, a translational regulator of glycolytic and mitochondrial enzymes with known oncogenic function. LIP activates LIN28B through repression of the let-7 microRNA family that targets the Lin28b-mRNA. Transgenic mice overexpressing LIP have reduced levels of let-7 and increased LIN28B expression, which is associated with metabolic reprogramming as shown in primary bone marrow cells, and with hyperplasia in the skin. This study establishes LIP as an inducer of cancer-type metabolic reprogramming and as a regulator of the let-7/LIN28B regulatory circuit

    A NEW SATELLITE IMAGERY STEREO PIPELINE DESIGNED FOR SCALABILITY, ROBUSTNESS AND PERFORMANCE

    Get PDF
    Abstract. This paper presents a new Multiview Stereo Pipeline (MVS), called CARS, dedicated to satellite imagery. This pipeline is intended for massive Digital Surface Model (DSM) production and has therefore been designed to maximize scalability robustness and performance. Those two properties have driven the design of the workflow as well as the choice of algorithms and parameter trends, making our pipeline unique with respect to existing solutions in literature. This paper intends to serve as a reference paper for the pipeline implementation, and therefore provides a detailed description of algorithms and workflow. It also demonstrates the pipeline robustness and stability in several use cases, and compares its accuracy with the state-of-the-art pipelines on a reference dataset. Document type: Articl
    • …
    corecore