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While quantummechanics imposes a fundamental limit on the precision of interferometric measurements
of mechanical motion due to measurement backaction, the nonlinear nature of the coupling also leads to
parametric instabilities that place practical limits on the sensitivity by limiting the power in the
interferometer. Such instabilities have been extensively studied in the context of gravitational wave
detectors, and their presence has recently been reported in Advanced LIGO. Here, we observe
experimentally and describe theoretically a new type of optomechanical instability that arises in two-
tone backaction-evading (BAE) measurements, a protocol designed to overcome the standard quantum
limit. We demonstrate the effect in the optical domain with a photonic crystal nanobeam cavity and in the
microwave domain with a micromechanical oscillator coupled to a microwave resonator. In contrast to the
well-known parametric oscillatory instability that occurs in single-tone, blue-detuned pumping, and results
from a two-mode squeezing interaction between the optical and mechanical modes, the parametric
instability in balanced two-tone optomechanics results from single-mode squeezing of the mechanical mode
in the presence of small detuning errors in the two pump frequencies. Counterintuitively, the instability
occurs even in the presence of perfectly balanced intracavity fields and can occur for both signs of detuning
errors. We find excellent quantitative agreement with our theoretical predictions. Since the constraints on
tuning accuracy become stricter with increasing probe power, the instability imposes a fundamental
limitation on BAEmeasurements as well as other two-tone schemes, such as dissipative squeezing of optical
and microwave fields or of mechanical motion. In addition to identifying a new limitation in two-tone BAE
measurements, the results also introduce a new type of nonlinear dynamics in cavity optomechanics.
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I. INTRODUCTION

Interferometric position measurement of mechanical
oscillators is the underlying principle of the Laser
Interferometer Gravitational Observatory (LIGO) [1] and
constitutes one of the most sensitive techniques for deter-
mining absolute distance available to date. In a similar vein,
cavity optomechanical systems [2],which exploit radiation-
pressure coupling of light and mechanical motion in micro-
mechanical and nanomechanical systems, have achieved

some of the most sensitive measurements of mechanical
motion relative to the zero-point motion [3,4]. They can
operate in a regime where measurement quantum back-
action is relevant [5,6] and where cooling [7–9] and
amplification [10–12] via radiation-pressure backaction
is accessible. In both settings, the quantum fluctuations
of radiation pressure place a fundamental limitation on the
displacement sensitivity [13,14]. Still, there can be other
constraints. Radiation-pressure nonlinearities can equally
well pose a limit to sensitivity. Indeed, the parametric
oscillatory instability [10–12,15–19] is one of the most
fundamental optomechanical effects predicted to limit the
performance of the LIGO detector by constraining the
optical power below the self-induced oscillation threshold
[10,20–26]. It arises from the fact that radiation-pressure
coupling is intrinsically nonlinear, giving rise—in addition
to static optical bistability [27]—to rich nonlinear dynam-
ics, leading to an intricate landscape of multiple stable
attractors (dynamicalmultistability) [12,19,28] and classical

*I. S., A. Y, N. S., L. Q. contributed equally to this work.
†tobias.kippenberg@epfl.ch
‡itay.shomroni@epfl.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 9, 041022 (2019)

2160-3308=19=9(4)=041022(11) 041022-1 Published by the American Physical Society

https://orcid.org/0000-0002-9947-5502
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.9.041022&domain=pdf&date_stamp=2019-10-30
https://doi.org/10.1103/PhysRevX.9.041022
https://doi.org/10.1103/PhysRevX.9.041022
https://doi.org/10.1103/PhysRevX.9.041022
https://doi.org/10.1103/PhysRevX.9.041022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


chaos [29]. Radiation-pressure-induced parametric oscilla-
tory instability has been observed in cavity optomechanical
systems [11] and, a decade later, in the Advanced LIGO
detector itself [30]. Special measures must be taken for its
suppression [31]. Understanding such dynamical instabil-
ities in optomechanical systems is important for the reali-
zation of ultrasensitive displacement measurements that
operate with high cooperativity. In addition, nonlinear
phenomena in optomechanical systems have been the
subject of experimental studies by themselves [28,32,33].
Here, we report a new type of instability caused by

radiation pressure that is distinct from the parametric
oscillatory instability. The instability occurs in optomechan-
ical systems drivenwith two tones. One particular example is
a class of quantum nondemolition measurements—two-tone
backaction-evading (BAE) measurements as first proposed
by Thorne and co-workers [34–36]—that aim to surpass the
standard quantum limit (SQL) of measurement of mechani-
cal motion [36]. These BAE measurements proceed by
pumping an optomechanical system (that resides in the
resolved sideband limit [7]) simultaneously on the upper
and lower motional sidebands of the cavity, and allow in
principle arbitrary measurement sensitivity; by increasing
the probing power, measurement imprecision is decreased,
without incurring additional measurement noise due to
quantum backaction. Although theoretically proposed sev-
eral decades ago, only recently have advances in cavity
optomechanics made it possible to operate under conditions
dominated by quantum backaction and carry out BAE
measurements with both microwave [37–40] and optical
[41] systems. The two-tone instability reported here arises
from deviations from the ideal BAE configuration where
there is a finite-frequency detuning error with respect to both
optical and mechanical resonance frequencies. In contrast to
the well-known parametric oscillatory instability that occurs
in single-tone pumping on the upper motional sideband
(or blue detuned in the bad-cavity limit), which results from a
two-mode squeezing interaction (nondegenerate parametric
down-conversion) between the optical and mechanical
modes, and is associated with antidamping, the instability
in balanced two-tone optomechanics results from single-
mode squeezing (degenerate parametric down-conversion)
of the mechanical mode, and is associated with the optical
spring effect. While the parametric oscillatory instability is
dynamically classified as an unstable spiral, the two-tone
instability is classified as a saddle point [42].We gain further
insight by showing that the balanced two-tone scheme in
the good-cavity (i.e., resolved-sideband) limit can bemapped
to single-tone optomechanics in the bad-cavity limit.
The threshold for the onset of the instability depends on

the magnitude of the tuning errors, and is also inversely
proportional to the optical pump power. For any given
experimental inaccuracy in the pump frequency, a finite
instability threshold exists in two-tone experiments, which
ultimately limits the maximum probe power and thus the

achievable sensitivity. As we show, these limitations can be
prohibitive for strong pumping powers aiming to surpass
the SQL. We emphasize that the two-tone instability is
intrinsic to the optomechanical interaction and does not arise
from extraneous effects. It depends exclusively on tuning
errors and power. Thus it stands in contrast to previously
reported instabilities in BAE measurements associated with
parametric driving [43,44], where the underlying cause has
been attributed to the dependence of the mechanical fre-
quency on temperature [45] or the presence of two-level
systems [46]. In this sense, the two-tone instability poses
fundamental constraints, and one may need to resort to
active feedback techniques, as in the case of the parametric
oscillatory instability [31,47].
While our focus is on BAE measurements, it is important

to note that the phenomenon reported here can affect other
two-tone optomechanical protocols, such as dissipative
optomechanical squeezing of optical and microwave fields
[48,49] or of mechanical motion [38,39,50–52]. For exam-
ple, in recent work on noiseless single-quadrature ampli-
fication of mechanical motion [53], the squeezing effect
we report here produces significant deviations from the
expected system behavior.

II. OBSERVATION OF INSTABILITY IN
TWO-TONE PUMPING

In a BAE measurement the cavity, with resonance
frequency ωc, is probed with two pump tones of equal
power, each tuned to the upper and lower motional sideband
of the cavity, i.e., at ωc � Ωm. It can also be understood as a
single pump tuned at ωc with full amplitude modulation at
the mechanical frequency Ωm. In Fig. 1(a) we illustrate the
scheme, and introduce a small detuning error Δc ≪ κ of
the symmetrically spaced tones with respect to the cavity
resonance, as well as an error Δm ∼ Γm in modulation
frequency. As a result, the two tones are detuned by
Δc � ðΩm þ ΔmÞ from the cavity resonance. The motion
of the oscillator, due to thermal noise from the environment
and quantum backaction by the pump fields, is imprinted as
fluctuations on the fields reflected from the optomechanical
system. The corresponding output noise spectrum of the
two probes exhibits two Lorentzians separated by 2Δm,
also shown in Fig. 1(a). When Δc ¼ Δm ¼ 0, an ideal
BAEmeasurement is performed. The mechanical sidebands
are superimposed on each other, but while thermal motion
adds in quadrature, the quantum backaction noise is
canceled from the measurement record [37,41,54]. A hall-
mark of BAE measurements is witnessing, as Δm is
varied from a finite value to zero, a total mechanical noise
that is lower than the sum total of the two individual
mechanical noise spectra. The total evaded backaction,
expressed in units of mechanical quanta, is equal to the
optomechanical cooperativity C, proportional to the prob-
ing power.
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Such BAE measurements have been carried out in the
microwave domain in several experiments using mechan-
ically compliant capacitors [37–40], and have recently been
extended to the optical domain [41]. We carried out BAE
experiments using an optomechanical photonic crystal
nanobeam cavity operating at GHz frequencies mounted
in a 3He buffer-gas cryostat, as detailed in prior work
[41,55]. The parameters of the devices are shown in the
Appendix C, and details of the measurement setup, which
uses a quantum-limited heterodyne detection method,
are contained in Ref. [41]. Figure 2(a) shows our BAE
measurement in the optical domain. In this experiment
the cooperativity was set to C ≃ 2.6 and Δm scanned from
a positive value toward zero. However, instead of the
expected decrease in total noise, indicating BAE, an
exponential increase in the total noise is observed near
Δm=2π ¼ 40 kHz. Upon a further decrease in Δm, the
system leaves the linear regime as the optical cavity
undergoes self-oscillations; i.e., we observe an instability.
To independently confirm the existence and universality

of this phenomenon, we performed the measurement in

an entirely different optomechanical system: an electro-
mechanical system based on a mechanically compliant
vacuum-gap capacitor coupled to a superconducting micro-
wave resonator placed in a dilution refrigerator [56,57].
Figure 2(b) shows this experiment, with a cooperativity of
C ¼ 7 (here, measurement backaction includes classical
noise, which should also be canceled). In this second
measurement as well, we observe an exponential increase
in the total noise as the detuning Δm is decreased. As Δm is
decreased further, the noise saturates the HEMT amplifier
in the detection chain, leading to an increased noise floor
[Fig. 2(b), yellow curve]. In both experiments, BAE is not
observed under the given experimental conditions.
The origin of this instability is not a spurious effect in the

experiments, as is evident from the observation that the
same behavior occurs in two very different optomechanical
systems measured with very different equipment. Instead,
as shown below, the instability is a direct consequence
of the optomechanical interaction in the presence of the
small tuning errors Δm and Δc and depends only on these
two parameters and the cooperativity. We next develop the
theory behind this new instability in Sec. III, and perform a
systematic experimental study in Sec. IV that fully con-
firms the theoretical predictions.

III. THEORY

It is well known that the antidamping induced by
pumping the cavity on the upper motional sideband (or
blue detuning in the bad-cavity limit) can induce a para-
metric oscillatory instability. In principle, there exists
another type of dynamical instability in this system, one
associated with the optical spring effect, i.e., a change in the
restoring force induced by light. This cannot occur in the
resolved-sideband regime, in the relevant case of weak
coupling between the mechanical mode and the cavity
field. Indeed, optomechanical systems typically employ
high-quality-factor oscillators, where the shift in mechanical
frequency due to dynamical backaction can be neglected.
However, as we show below, this instability may arise when
pumping with two tones close to the upper and lower
mechanical sidebands [Fig. 1(a)], as in BAE measurements,
for example. In fact, as we show, the situationwhen pumping
with two tones and that for single-tone driving on the upper
motional sideband are described by the same linearized
equations.
We model the system by the standard optomechanical

Hamiltonian comprising one cavitymodewith frequencyωc,
one mechanical mode with frequency Ωm, and a nonlinear
interaction Ĥint ¼ −ℏg0â†âðb̂† þ b̂Þ, where â ðb̂Þ denote the
optical (mechanical) annihilation operator. The cavity is
driven by one or two coherent tones that produce a coherent
intracavity field with amplitude āðtÞ. We move to the
interaction picture with respect to the Hamiltonian Ĥ0 ¼
ℏωlâ†â and linearize the operators, â → āðtÞ þ δâ and

O

O

D
C

C

(a)

(b)

FIG. 1. Pumping scheme leading to two-tone instability.
(a) Frequency-space representation of optical backaction-evading
(BAE) measurement using two-tone pumping. An optomechan-
ical system is pumped with two pumps that are placed on the
lower and upper motional sideband of the cavity (shown in gray).
Two detuning errors are introduced, due to imperfect knowledge
of the mechanical oscillator frequency (Δm), and due to imperfect
symmetric spacing around the cavities’ resonance frequency ωc,
as expressed by Δc. Also shown are the mechanical resonance at
frequency Ωm and the scattered mechanical sidebands. The inset
shows an optomechanical system: a mechanical oscillator (posi-
tion coordinate x̂) that is the moving mirror of a Fabry-Perot
cavity and that is coupled to the cavity mode by radiation
pressure. (b) An equivalent system, in which the two-tone
pumping is mapped to a Hamiltonian that exhibits the same
dynamics as (a), consisting of a single continuous pump field
applied at ωc þ Δc and with the mechanical oscillator frequency
obeying the substitution Ωm → −Δm. Note that Δc and Δm have
been exaggerated for clarity.
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b̂ → b̄þ δb̂, where āðtÞ is the coherent oscillation of the
cavity field and b̄ the static displacement of the mechanical
oscillator. This yields the linearized Hamiltonian

Ĥ=ℏ¼−Δcδâ†δâþΩmδb̂
†δb̂− gðtÞðδâþ δâ†Þðδb̂þ δb̂†Þ;

ð1Þ

where gðtÞ ¼ g0āðtÞ denotes the field-enhanced coupling.
We consider two distinct situations: single-tone driving on
the upper motional sideband and balanced two-tone driving
on the upper and lower motional sidebands. In single-tone
driving, we have Δc ¼ Ωm and gðtÞ ¼ g ¼ const, whereas
the two-tone driving is described through Δc ≈ 0 and
gðtÞ ¼ g cos½ðΩm þ ΔmÞt�. Applying the rotating-wave
approximation (RWA) in two-tone driving but not in
single-tone driving, both situations can be described by the
same Hamiltonian,

Ĥ=ℏ ¼ −Δcδâ†δâ − Δmδb̂
†δb̂ − gðδâþ δâ†Þðδb̂þ δb̂†Þ;

ð2Þ
where in single-tone driving, Δm ¼ −Ωm, whereas in two-
tone driving, Δm ≈ 0. This equivalence is illustrated in
Fig. 1(b).
We describe the optomechanical system in terms of

quantum Langevin equations [2,58], which take into

account decay into the cavity and mechanical bath.
Eliminating the optical modes in frequency space, we arrive
at an effective description for the mechanical mode only:

�
Γm

2
− iðΔm þ ωÞ þ iΣðωÞ

�
δb̂ðωÞ

¼ −iΣðωÞδb̂†ðωÞ þ ξ̂inðωÞ; ð3Þ

where the self-energy (effective coupling) is given through

ΣðωÞ ¼ 2Δcg2

ðκ=2 − iωÞ2 þ Δ2
c
: ð4Þ

In Eq. (3) we have subsumed all noise contribution into a
single generic noise input operator ξ̂inðωÞ, which does not
play a role in the instability mechanism. So far we have
not made any approximations (beyond the RWA in two-
tone driving), and indeed Eq. (3) contains all the effects we
wish to consider here. The self-energy Σ plays two roles.
First, it couples δb̂† to δb̂, thus acting like the coupling in a
degenerate parametric oscillator. Second, as a self-energy,
its real part renormalizes the frequency of the mechanical
resonator and its imaginary part modifies the effective
damping.
Parametric oscillatory instability.—In single-tone driving

on the upper motional sideband, a parametric oscillatory

(b)(a)

FIG. 2. Experimental observation of two-tone instability. Panels (a) and (b) show two-tone BAE measurements in the presence of a
small optical tuning error Δc and a mechanical tuning error Δm. (a) BAE measurement in the optical domain with an optomechanical
system based on a silicon photonic crystal nanobeam cavity (inset). A sequence of measurements is shown, where the mechanical
sidebands are measured via quantum-limited heterodyne detection, normalized to the shot-noise level. Here,ωLO is the optical frequency
of the heterodyne local oscillator laser. In the sequence, the mechanical “tuning error” Δm is varied from a positive value toward zero,
where Δm ¼ 0 ideally corresponds to a BAE measurement. Because of the cavity tuning error Δc, at Δm=2π ¼ 0.04 MHz a strong
increase in the total mechanical noise is observed, as well as narrowing of the sideband, instead of the expected decrease due to
backaction cancellation. This is the onset of the two-tone instability. (b) BAE measurement in the microwave domain with a
mechanically compliant capacitor coupled to a superconducting microwave resonator (inset). The procedure is the same as in (a).
Measurements with both positive and negative values of Δm are shown. The measurement at Δm=2π ¼ 0.02 kHz occurs within the
domain of instability (yellow curve), in which case the observed spectrum is distorted by saturation of the HEMT amplifier used in the
detection chain. Note the logarithmic y axis.

ITAY SHOMRONI et al. PHYS. REV. X 9, 041022 (2019)

041022-4



instability occurs if the optical antidamping overcomes
the intrinsic damping. In this regime, the mechanical
frequency is very large, so the right-hand side of Eq. (3)
has hardly any effect and can be neglected in a RWA.
The instability occurs because the mechanical damping
is modified by the imaginary part of the susceptibility,
Eq. (4), −2Im½ΣðΩmÞ� ≃ −ΓmC, where the cooperativity is
C ¼ 4g2=κΓm. This yields the effective mechanical damp-
ing Γeff ≃ Γmð1 − CÞ, thus recovering the standard insta-
bility threshold C ¼ 1.
Two-tone instability.—In backaction-evading measure-

ments, however, Δm is small, as it represents a tuning error.
This makes the right-hand side of Eq. (3) near resonant,
such that it cannot be neglected. The instability arises in a
way similar to a degenerate parametric oscillator [59].
Since κ is now a large parameter, we can neglect the
frequency dependence of ΣðωÞ ≈ Σð0Þ≡ Σ ∈ R. Note that
now the self-energy Σ coincides with the optical spring
effect due to a single drive detuned by Δc from cavity
resonance. This allows us to recast Eq. (3) again as an
equation of motion:

δ _̂bðtÞ ¼
�
−
Γm

2
þ iðΔm − ΣÞ

�
δb̂ðtÞ − iΣδb̂†ðtÞ þ ξ̂inðtÞ:

ð5Þ

This equation is the same quantum Langevin equation as
one would write down for a damped degenerate parametric
oscillator. It can intuitively be viewed as arising from
an optical spring effect modulated at 2ðΩm þ ΔmÞ.
The dynamical matrix corresponding to Eq. (5) has
eigenvalues −ðΓm=2Þ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔmðΔm − 2ΣÞp

. For 2Σ < Δm,
the eigenvalues have a negative real part (damping Γm=2)
and a finite imaginary part (effective frequency Δeff ¼
Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm½Δm − 2Σ�p

). As Σ increases, first the effective
frequency Δeff vanishes, at which point the damping of
the modes starts to be modified. The vanishing of the
effective mechanical frequency corresponds to the
mechanical oscillation phase locking to the modulated
optical field. The threshold for instability occurs when

4g2ΔmΔc ¼
�
Γ2
m

4
þ Δ2

m

��
κ2

4
þ Δ2

c

�
: ð6Þ

The instability threshold can also be written in terms of
normalized detunings Δ̃c ≡ Δc=ðκ=2Þ and Δ̃m ≡ Δm=
ðΓm=2Þ, yielding 4C ¼ ð1þ Δ̃2

cÞð1þ Δ̃2
mÞ=ðΔ̃cΔ̃mÞ. This

equation can only be fulfilled for C ≥ 1, and we plot its
contours in Fig. 3. Note that Eq. (6) also predicts that the
instability can occur for both negative and positive values
of the two detuning errors (provided they have the same
sign), in contrast to the parametric oscillatory instability.
In Appendix A we derive instability regimes of both the

parametric oscillatory and two-tone instabilities using the
full Hamiltonian, Eq. (2).
Apart from using locking techniques to reduceΔc, it may

be possible to hold off the onset of the two-tone instability
by using active feedback. Feedback techniques to counter
the parametric oscillatory instability have been considered
[31,47]. In the case of the two-tone instability, the feedback
force would naturally be applied on the measured quad-
rature (and as such is not of the viscous damping type).

IV. EXPERIMENT

To validate Eq. (6), the threshold for the two-tone
instability in terms of Δm and Δc, we perform a two-
dimensional scan in the clean and well-controlled setting
of circuit electromechanics using the system comprising a
mechanically compliant vacuum-gap capacitor coupled to
a superconducting resonant circuit placed in a dilution
refrigerator [56,57]. Here, pump frequency fluctuations
and cavity frequency fluctuations are significantly smaller
than in the optical domain, and the detuning can be
accurately controlled. Full details on the system and
experiment are given in Appendix B. We present mea-
surements in the optical domain in Appendix C.
Figures 4(a)–4(c) show the total noise in the mechanical

sidebands as a function of Δ̃m and Δ̃c for three different
cooperativities C. Each horizontal cut in Figs. 4(a)–4(c)
corresponds to a measurement of the type shown in
Fig. 2(a). The domains of instability are clearly evident
as areas of increased noise (in red), in excellent agreement
with Eq. (6) (black contours). In particular, instability only

FIG. 3. Domains of two-tone instability. The onset of the two-
tone instability is given by the condition Eq. (6) and depends only
on Δ̃m ≡ Δm=ðΓm=2Þ, Δ̃c ≡ Δc=ðκ=2Þ, and the cooperativity C.
Here we plot the domains of instability as a function of Δ̃m and
Δ̃c for different cooperativities C (given as the contour labels).
As C increases, the stable region in the vicinity of the origin
Δ̃m ¼ Δ̃c ¼ 0 becomes smaller, reducing the range of Δ̃m and Δ̃c
for which the system is stable.
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arises when Δ̃mΔ̃c > 0, as predicted from Eq. (6), and can
arise both for red- (Δ̃c < 0) and blue-detuned (Δ̃c > 0)
mean probe frequency. Figures 4(d)–4(f) show the theo-
retical plots corresponding to Figs. 4(a)–4(c), again in
excellent agreement. Figures 4(g)–4(i) show the horizontal

cuts indicated in Fig. 4(b). The point Δ̃m ¼ Δ̃c ¼ 0
corresponds to a “perfect” BAE measurement, as can be
seen in Fig. 4(g), where a 3 dB decrease in the total
mechanical noise relative to Δ̃m ≠ 0 due to cancellation of
measurement backaction is evident.

FIG. 4. Investigation of the two-tone instability in a circuit-electromechanical system. (a)–(c) Mapping of the total mechanical noise as
a function of Δ̃m and Δ̃c, for cooperativities C ¼ f3.5; 7; 14g, respectively. The total power P in both mechanical sidebands in the output
spectra is shown, normalized to the power P0 at ðΔ̃m; Δ̃cÞ ¼ ð−18; 0Þ (no tuning error and far from the BAE regime). Since data points
do not align on a regular grid (accounting for small changes in Δ̃c along the horizontal scan), the rasterization was implemented using
nearest-neighbor (Voronoi) partitioning. Solid black lines are instability thresholds from Eq. (6). (d)–(f) Theory plots corresponding to
(a)–(c). Gray areas are unstable regions predicted by theory. (g)–(i) Cross sections of (b) for Δ̃c ¼ f0;−0.07;−0.18g, respectively
[nearest data points to horizontal dashed lines in (b)]. Solid black lines are theory predictions based on the full linear model.
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In Appendix B we show experimentally that, at the onset
of instability, the effective mechanical frequency (due to the
optical spring effect) equals the pump modulation fre-
quency (i.e., the effective mechanical frequency vanishes
in the rotating frame). In other words, while the instability
occurs for Δm ≠ 0, in the experiment the sidebands
coincide at the onset of instability.
The predicted decrease in size of the stable region with

increasing pumping power is clearly evident in the exper-
imental data depicted in Fig. 4, with Δ̃c ≲ 1=2C required to
avoid instability [e.g., Δ̃c ≲ 0.04 for C ¼ 14 in Fig. 4(c)].
Overall, excellent agreement is obtained between theory and
experiment, confirming our theoretical analysis and descrip-
tion of the effect. Thus, optomechanics imposes strict tuning
accuracy for a given measurement sensitivity in two-tone
BAE measurements. In this case, measurement backaction
is due to both quantum and classical noise in the two
microwave tones. It is important to emphasize that for BAE
measurements that allow measurements beyond the SQL,
cooperativities of C ≫ n̄m are required, thus highlighting the
stringent nature of the condition imposed by Δ̃c ≲ 1=2C.

V. CONCLUSION

We report experimentally and explain theoretically
a new type of dynamical instability that was previously
unreported in cavity optomechanics. This instability is
qualitatively different than the parametric oscillatory insta-
bility [10,12,17–20,60] and originates from degenerate
parametric amplification of the mechanical mode. In the
past, parametric oscillatory instability has limited certain
single-tone experiments. Our work now demonstrates that
the performance of emerging optomechanical experiments,
such as backaction-evadingmeasurements aimed at surpass-
ing the standard quantum limit [37,41], generation of
quantum squeezing [48,50,61,62], and noiseless single-
quadrature amplification [53], will be intrinsically con-
strained by another instability determined by tuning
accuracy and coupling strength. Even below the instability
threshold, these newdynamics need to be taken into account.

The code and data used to produce the plots within this
paper are available at [63]. All other data used in this study
are available from the corresponding authors upon reason-
able request.

ACKNOWLEDGMENTS

This work was supported by funding from the Swiss
National Science Foundation under Grant Agreement
No. NCCR-QSIT: 51NF40-160591. The samples were
fabricated in the Center of MicroNanoTechnology (CMi)
at EPFL. The photonic sample was partially fabricated
at the Binnig and Rohrer Nanotechnology Center (BRNC)
at IBM Research–Zurich. D. M. acknowledges support by
the ERC Advanced Grant QUENOCOBA under the EU
Horizon 2020 program (Grant Agreement No. 742102).

A. N. acknowledges a University Research Fellowship
from the Royal Society and support from the Winton
Programme for the Physics of Sustainability. This
work was supported by the European Union’s Horizon
2020 research and innovation programme under Grant
Agreement No. 732894 (FET Proactive HOT).

APPENDIX A: EIGENVALUES OF THE
DYNAMICAL MATRIX

Further understanding of the two-tone instability, and its
distinction from the parametric oscillatory instability, can
be achieved by examining the eigenvalues of the dynamical
matrix, similar to the analysis performed in Ref. [64].
The Hamiltonian Eq. (2) leads to the quantum Langevin
equations:

δ _̂a ¼ −ðκ=2 − iΔcÞδâþ igðδb̂þ δb̂†Þ þ ffiffiffi
κ

p
δâin; ðA1aÞ

δ _̂b ¼ −ðΓm=2 − iΔmÞδb̂þ igðδâþ δâ†Þ þ
ffiffiffiffiffiffi
Γm

p
δb̂in:

ðA1bÞ
Ignoring the input noise operators δâin and δb̂in, which
are irrelevant in the present analysis, the Langevin
equations (A1) can be written as a matrix equation
_x ¼ Mx, with

M ¼

0
BBB@

−κ=2 −Δc 0 0

Δc −κ=2 2g 0

0 0 −Γm=2 −Δm

2g 0 Δm −Γm=2

1
CCCA ðA2Þ

and

x ¼ ½δâþ δâ†; iðδâ† − δâÞ; δb̂þ δb̂†; iðδb̂† − δb̂Þ�T:
ðA3Þ

We recall that this dynamical equation describes both
single-tone pumping, with the equivalence −Δm → Ωm,
and two-tone pumping in the well-resolved sideband
regime (Fig. 1). An eigenvalue of the matrix Eq. (A2)
with a positive real part leads to an exponentially increasing
solution, and thus signals an instability.
Figure 5 shows the domains of instability in the

parameter space spanned by Δm and Δc. These domains
separate into two classes, corresponding to the parametric
and two-tone instabilities. In one class, which corresponds
to the conventional parametric oscillatory instability, the
imaginary part of the offending eigenvalue is nonzero,
corresponding to spiral dynamics [42]. The onset of the
parametric oscillatory instability coincides with the tran-
sition from a stable to an unstable spiral. This class lies
in the vicinity of the diagonal Δc ≈Ωm, as expected (note
that the regime Δm ¼ −Ωm > 0, although mathematically
possible, is unphysical in this case). The second class lies
close to the origin, in particular jΔmj ≪ κ, and corresponds
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to the two-tone instability. In this regime the eigenvalues
are well approximated by the eigenvalues of Eq. (5) due to
the slow dynamics of the optical field, and the instablity
domains are given by the simple condition Eq. (6). The
eigenvalues are real and of opposite sign, corresponding to
a saddle point, as expected from a degenerate parametric
amplifier. In this picture, as the power (∝ Σ) is increased,
the dynamics change from a stable spiral to a stable node
and finally to a saddle point [42]. Figure 3 shows the
domains of two-tone instablity for different powers.
It is noteworthy to mention that Eq. (5) describes a
harmonic oscillator with fixed damping Γm and power-
dependent natural frequency, i.e., ẍþ Γm _xþ ½Γ2

m=4þ
ΔmðΔm − 2ΣÞ�x ¼ Fext. This system becomes unstable
due to vanishing of the frequency (or restoring force).

APPENDIX B: MICROWAVE
EXPERIMENT DETAILS

For the microwave-domain part of this work, we used a
system similar to the one described in Ref. [57]. Specifically,
an overcoupled (κex=2π ¼ 2.65 MHz, κ0=2π ¼ 0.16 MHz)
Al superconducting microwave resonator with a resonance
frequency of ωc=2π ¼ 6.43 GHz that was coupled
(vacuum coupling rate g0=2π ¼ 194 Hz) to a mechanically
compliant vacuum-gap capacitor (Ωm=2π ¼ 6.15 MHz
and Γm=2π ≈ 20 Hz). The chip was cooled to about
15 mK in a dilution refrigerator.

In the experiment, we used three microwave sources
with a common frequency reference to pump the opto-
mechanical system: two BAE pumps with frequencies
ωc þ Δc � ðΩm þ ΔmÞ and an additional cooling pump
tuned to ωc −Ωm − δcool, where δcool=2π ¼ 400 kHz. The
purpose of the cooling pump was to reduce the thermal
occupation of the mechanical oscillator, thereby reducing
the fluctuations in power of the mechanical sidebands that
originate from fluctuations of the base temperature and
vibrations of the dilution refrigerator, since the oscillator
is dominantly coupled to the microwave bath. The cooling
tone also increased the mechanical damping rate to
Γeff=2π ¼ 110 Hz, allowing us to observe the narrowing
of the mechanical sidebands when approaching the insta-
bility with better resolution.
To take the data in Fig. 4, we first measured the cavity

resonance frequency ωc by applying the cooling tone
alone and acquiring the microwave response [65]. We then
placed the BAE pumps symmetrically around the reso-
nance, Δc ¼ 0, and measured the mechanical resonance
frequency Ωm using the distance between the peaks of the
mechanical sidebands. The data of Fig. 4 were taken along
horizontal scans, by first setting the required Δc and
varying Δm, acquiring noise spectra as in Fig. 2(b). Prior
to taking each horizontal line, we followed a procedure to
ensure that no additional mechanical loss or amplification
was introduced by the BAE pumps that might lead to
parametric oscillatory instability: First, only the red BAE
pump was applied and its power optimized such that
the width of the mechanical sideband corresponds to the
desired single-tone cooperativity C (computed from the
additional damping introduced). Second, the blue BAE
pump was added, and its power adjusted such that the
width of the mechanical sideband narrows back to Γeff .
This procedure was also followed prior to measurement
of Ωm.
To account for cavity frequency fluctuations, the micro-

wave frequency ωc was also measured after each single
point ðΔm;ΔcÞ. This results in a slight vertical scatter along
the horizontal scan. We used nearest-neighbor (Voronoi)
partitioning to present the full two-dimensional image. In
addition, we disconnected all pumps for 2 s between data
points to let the mechanical oscillator thermalize and cancel
any hysteresis effects due to the instability.
In Fig. 6 we plot the difference between Δm and the

change in effective mechanical frequency of the oscillator
δΩm (due to the optical spring effect), for the same data
as in Fig. 4(b). Near the onset of the two-tone instability,
the two sidebands coincide, and this difference
approaches zero; i.e., the effective mechanical frequency
Ωm þ δΩm becomes equal to the modulation frequency of
the pump, Ωm þ Δm. This corresponds to vanishing of
the effective mechanical frequency in the frame rotating
with the modulation frequency, as predicted theoretically
in Sec. III.

FIG. 5. Instability domains from eigenvalue analysis. Domains
where an eigenvalue of the dynamical matrix Eq. (A2) has
positive real part, signaling an instability. The blue domain, in the
neighborhood of −Δm ¼ Ωm ≈ Δc, is the known parametric
oscillatory instability. In this domain, the imaginary part of the
eigenvalue is nonzero. In reality, the mechanical frequency is
positive Ωm > 0, such that the lower right-hand part is unphys-
ical. The red domain that occurs for jΔmj ≪ κ (enlargement
shown in the inset) is the two-tone instability. In this domain
ΔmΔc > 0, and the imaginary part of the eigenvalue is zero. The
parameters used are κ ¼ 1, Γm ¼ 10−2, and C ¼ 2.
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APPENDIX C: OBSERVATION OF
TWO-TONE INSTABILITY IN

THE OPTICAL DOMAIN

As shown in Fig. 2(a), we also observed the two-
tone instability in an optomechanical system operating
in the optical domain. The system is an optomechanical
photonic crystal nanobeam cavity [8,66] with a mechani-
cal frequency Ωm=2π ≃ 5.2 GHz, optical resonance

frequency ωc ≃ 194 THz (wavelength λ ≃ 1540 nm),
and cavity linewidth κ=2π ¼ 300 MHz (optical Q factor
∼6.5 × 105). The vacuum optomechanical coupling rate
is g0=2π ¼ 930 kHz. The sample is measured in a 3He
buffer-gas cryostat (Oxford Instruments HelioxTL), as
reported previously [41,55]. The buffer gas facilitates the
thermalization of the sample, preventing deleterious
optical absorption heating and allows strong pumping.
The controlled pressure of the buffer gas affects the
damping rate of the oscillator. The various measurements
reported here were done at temperatures in the range
4.6–4.9 K, and pressures 32–160 mbar, resulting in a
damping rate of Γm=2π ¼ 100–285 kHz.
Figure 7 shows examples of the BAE measurements

introduced in Sec. II, with Δm scanned from positive to
negative values, while holding Δc approximately constant.
Two measurements of similar cooperativities C ∼ 2.2–2.6
are shown in Fig. 7(a). In the lower measurement Δc is
farther from 0, bringing it in the vicinity of the domain
of instability (see Fig. 3), which is triggered on the next
data point (not shown). This is the same measurement as
Fig. 2(a). The separation between the data and the domain
of instability is ∼2π × 15 MHz, well within the uncertainty
in our measurement of Δc. Figure 7(b) shows similar data
for higher cooperativity C ∼ 4, where uncertainty in meas-
urement of Δc precludes discerning between the stable and
unstable behavior. Figure 7(c) shows the total mechanical
noise in the data of Fig. 7(a), with the theoretical fit
obtained from the Langevin equations (A1). The data
shown in light red, not encountering the instability, show
imperfect, asymmetric BAE behavior (due to Δc ≠ 0). The
dark red data show the amplified noise prior to the onset of
instability.

FIG. 6. Vanishing of the effective mechanical frequency. The
plot shows the difference between the measured effective
mechanical frequency and pump modulation frequency as a
function of the detunings. Near the instability domain (shaded
in gray), the two frequencies become equal, which corresponds to
vanishing of the effective mechanical frequency in the rotating
frame, confirming the theoretical treatment. Measurement is the
same as in Fig. 4(b).

(a) (b) (c)

FIG. 7. Two-tone instability in the optical domain. (a) Two-tone BAE measurements (dark red and light red dots) scanningΔm with Δc

kept approximately constant. The ðΔ̃m; Δ̃cÞ coordinate of each measurement is plotted. The instability contours for the respective
cooperativities, around C ∼ 2.2–2.6 (contour label), are indicated with the same color. While one measurement sequence (C ¼ 2.23)
remains near Δ̃c ≈ 0, the other (C ¼ 2.58) encounters instability in the vicinity of its corresponding contour. The highlighted dot is the
measurement right before instability. (b) Same as (a) with higher C ∼ 4.1. Here the stable region is smaller, highlighting the difficulty of
achieving stable operation due to the inaccuracy in Δ̃c. (c) Total noise power in the mechanical sidebands, normalized to 1 for large Δm,
for the two measurements sequences in (a). The sudden increase in power for the unstable data is evident. The solid lines are theoretical
fits using the full Langevin equations. See text for more details.
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