221 research outputs found
Anesthetic experience of an adult patient with an unrecognized tracheal bronchus -A case report-
We present a case of problematic tracheal intubation in an adult patient with an unrecognized tracheal bronchus. Immediately after tracheal intubation and position change to prone, bilateral breath sounds were almost absent, and there was a diminished tidal volume. In order to resolve the ventilatory difficulty, the wire-reinforced tube was replaced with a conventional tube, and proper positioning of the tube was completed under fiberoptic guidance. A tracheal bronchus (originating about 1.2 cm above the carina, and supplying the right upper lobe) was found on the postoperative chest CT. In the presence of tracheal bronchus, tracheal intubation may cause pulmonary complications. Anesthesiologists should keep in mind the anesthetic implications of tracheal bronchus, and must be familiar with the use of fiberoptic bronchoscopy for proper positioning of endotracheal tube
Inadvertent arterial insertion of a central venous catheter: delayed recognition with abrupt changes in pressure waveform during surgery -A case report-
We present a case of inadvertent arterial insertion of a central venous catheter, identified during a pericardiectomy procedure after observing abrupt changes in pressure waveform and confirmed via arterial blood gas analysis and transesophageal echocardiography. Central venous pressure measurement was initially 20 mmHg in supine, and then elevated to 30-40 mmHg in right lateral decubitus, presumably resulting from constrictive physiology of pericarditis. The pressure waveforms, however, abruptly changed from a venous to an arterial waveform during surgery. When visual discrimination between arterial and venous blood regurgitation is unreliable, anesthesiologists should confirm that using all the available methods one has on the scene, especially after at least two unsuccessful attempts or in patients with advanced age or clinical conditions resulting in jugular venous dilation. To prevent arterial catheterization, one should limit the leftward rotation of the head by <40° and consider using ultrasound-guided method after more than two unsuccessful attempts
Proteomic and biochemical analyses reveal the activation of unfolded protein response, ERK-1/2 and ribosomal protein S6 signaling in experimental autoimmune myocarditis rat model
<p>Abstract</p> <p>Background</p> <p>To investigate the molecular and cellular pathogenesis underlying myocarditis, we used an experimental autoimmune myocarditis (EAM)-induced heart failure rat model that represents T cell mediated postinflammatory heart disorders.</p> <p>Results</p> <p>By performing unbiased 2-dimensional electrophoresis of protein extracts from control rat heart tissues and EAM rat heart tissues, followed by nano-HPLC-ESI-QIT-MS, 67 proteins were identified from 71 spots that exhibited significantly altered expression levels. The majority of up-regulated proteins were confidently associated with unfolded protein responses (UPR), while the majority of down-regulated proteins were involved with the generation of precursor metabolites and energy metabolism in mitochondria. Although there was no difference in AKT signaling between EAM rat heart tissues and control rat heart tissues, the amounts and activities of extracellular signal-regulated kinase (ERK)-1/2 and ribosomal protein S6 (rpS6) were significantly increased. By comparing our data with the previously reported myocardial proteome of the Coxsackie viruses of group B (CVB)-mediated myocarditis model, we found that UPR-related proteins were commonly up-regulated in two murine myocarditis models. Even though only two out of 29 down-regulated proteins in EAM rat heart tissues were also dysregulated in CVB-infected rat heart tissues, other proteins known to be involved with the generation of precursor metabolites and energy metabolism in mitochondria were also dysregulated in CVB-mediated myocarditis rat heart tissues, suggesting that impairment of mitochondrial functions may be a common underlying mechanism of the two murine myocarditis models.</p> <p>Conclusions</p> <p>UPR, ERK-1/2 and S6RP signaling were activated in both EAM- and CVB-induced myocarditis murine models. Thus, the conserved components of signaling pathways in two murine models of acute myocarditis could be targets for developing new therapeutic drugs or methods aimed at treating enigmatic myocarditis.</p
Helical tomotherapy with concurrent capecitabine for the treatment of inoperable pancreatic cancer
<p>Abstract</p> <p>Background</p> <p>Helical tomotherapy, an advanced intensity-modulated radiation therapy with integrated CT imaging, permits highly conformal irradiation with sparing of normal tissue. Capecitabine, a pro-drug of 5-FU that induces thymidine phosphorylase can achieve higher levels of intracellular 5-FU when administered concurrently with radiation. We evaluated the feasibility as well as the clinical outcome of concurrent administration of capecitabine with tomotherapy in patients with advanced pancreatic cancer.</p> <p>Methods</p> <p>Nineteen patients with advanced pancreatic cancer including primarily unresectable disease and recurrence after curative surgery were included in the study. Two planning target volumes (PTV) were entered: PTV1 is gross tumor volume; and PTV2, the volume of the draining lymph nodes. The total doses to target 1 and target 2 were 55 and 50 Gy, respectively. Capecitabine at 1600 mg/m<sup>2</sup>/day was administered on each day of irradiation.</p> <p>Results</p> <p>Twenty six measurable lesions were evaluated. Overall in-field response rate was 42.3%; partial responses were achieved in 53.3% of the pancreatic masses, 28.6% of distant metastatic lesions and 25.0% of regional lymph nodes. The median duration of follow-up after tomotherapy was 6.5 months. None of the lesions showed in-field progression. Treatment was well tolerated with only minor toxicities such as grade 1 nausea (one patient), grade 1 hand-foot syndrome (one patient) and grade 1/2 fatigue (three patients).</p> <p>Conclusions</p> <p>Helical tomotherapy with concurrent capecitabine is a feasible option without significant toxicities in patients with advanced pancreatic cancer. We achieved excellent conformal distribution of radiation doses and minimal treatment-related toxicities with promising target volume responses.</p
Adiponectin gene SNP 276G → T, nutrient intakes, and cardiovascular disease risk in Korean type 2 DM patients
Single nucleotide polymorphism (SNP) in adiponectin gene has been associated with insulin resistance, diabetes, and cardiovascular disease (CVD). This study was performed to investigate the association of SNP 276G→T at adiponectin gene with CVD risk factors in Korean type 2 diabetes mellitus (DM) patients. The subjects were 351 type 2 DM patients visited a DM clinic in Seoul, and the patients with known CVD were excluded. The adiponectin SNP 276G→T was analyzed and dietary intakes were assessed by a Food Frequency Questionnaire. The prevalence of G/G, G/T, and T/T genotype was 47.6%, 43.3%, and 9.1%, respectively. Male subjects with T/T genotype showed significantly lower level of adiponectin and HDL-cholesterol and significantly higher C-reactive protein (CRP) level compared to G/G and G/T genotypes. In G/G genotype, protein intake was negatively correlated to body weight, BMI, and waist circumference, and there were positive correlation between carbohydrate intake and BMI, waist-hip ratio, and ApoB/apoA-1 ratio in G/T genotype. However, in T/T genotype, there was no significant association between macronutrient intakes and anthropometric and hematological values. In conclusion, CVD risk would be high in type 2 DM patients with T/T genotype, and the association of macronutrient intakes with anthropometric and hematologic factors was different among the three adiponectin genotypes. These results may imply the need for different dietary management regime according to adiponectin genotype to lower CVD complications in Korean type 2 DM patients
Hypoglycemic effects of vanadium on alloxan monohydrate induced diabetic dogs
The hypoglycemic effects after oral administration of vanadium have been studied previously in many species such as rats, mice and even humans. However, there has been no prior report on the glucose lowering effect of vanadium on diabetic dogs. Therefore, the purpose of this study was to evaluate the hypoglycemic effects of oral vanadium on diabetic dogs. Diabetes mellitus in the dogs studied was induced by alloxan monohydrate intravenous injection. The dogs were divided into two groups, one was the diabetic control (DC) group (n = 4) and the other was the vanadium treated (DV) group (n = 6). Fresh water was supplied to the dogs in the DC group, but sodium metavanadate solution (0.1~0.2 mg/ml) was given to the dogs in DV group from one week after the alloxan injection. The fasting glucose levels, fructosamine and serum chemistry profiles were compared between the two groups weekly for three weeks. The fasting blood glucose levels in DV group were significantly lower than those in the DC group (p < 0.01). Fructosamine levels in the DV group were also lower than those in the DC group (p < 0.05). The serum chemistry profiles were not significantly different in comparisons between the two groups. However, the cholesterol levels were significantly lower in the DV group compared to the DC group (p < 0.05). Our findings showed that oral vanadium administration had a hypoglycemic effect on chemically induced diabetic dogs
In vitro and in vivo gene therapy with CMV vector-mediated presumed dog β-nerve growth factor in pyridoxine-induced neuropathy dogs
Due to the therapeutic potential of gene therapy for neuronal injury, many studies of neurotrophic factors, vectors, and animal models have been performed. The presumed dog β-nerve growth factor (pdβ-NGF) was generated and cloned and its expression was confirmed in CHO cells. The recombinant pdβ-NGF protein reacted with a human β-NGF antibody and showed bioactivity in PC12 cells. The pdβ-NGF was shown to have similar bioactivity to the dog β-NGF. The recombinant pdβ-NGF plasmid was administrated into the intrathecal space in the gene therapy group. Twenty-four hours after the vector inoculation, the gene therapy group and the positive control group were intoxicated with excess pyridoxine for seven days. Each morning throughout the test period, the dogs' body weight was taken and postural reaction assessments were made. Electrophysiological recordings were performed twice, once before the experiment and once after the test period. After the experimental period, histological analysis was performed. Dogs in the gene therapy group had no weight change and were normal in postural reaction assessments. Electrophysiological recordings were also normal for the gene therapy group. Histological analysis showed that neither the axons nor the myelin of the dorsal funiculus of L4 were severely damaged in the gene therapy group. In addition, the dorsal root ganglia of L4 and the peripheral nerves (sciatic nerve) did not experience severe degenerative changes in the gene therapy group. This study is the first to show the protective effect of NGF gene therapy in a dog model
Enhanced cardiac expression of two isoforms of matrix metalloproteinase-2 in experimental diabetes mellitus.
BackgroundDiabetic cardiomyopathy (DM CMP) is defined as cardiomyocyte damage and ventricular dysfunction directly associated with diabetes independent of concomitant coronary artery disease or hypertension. Matrix metalloproteinases (MMPs), especially MMP-2, have been reported to underlie the pathogenesis of DM CMP by increasing extracellular collagen content.PurposeWe hypothesized that two discrete MMP-2 isoforms (full length MMP-2, FL-MMP-2; N-terminal truncated MMP-2, NTT-MMP-2) are induced by high glucose stimulation in vitro and in an experimental diabetic heart model.MethodsRat cardiomyoblasts (H9C2 cells) were examined to determine whether high glucose can induce the expression of the two isoforms of MMP-2. For the in vivo study, we used the streptozotocin-induced DM mouse heart model and age-matched controls. The changes of each MMP-2 isoform expression in the diabetic mice hearts were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical stains were conducted to identify the location and patterns of MMP-2 isoform expression. Echocardiography was performed to compare and analyze the changes in cardiac function induced by diabetes.ResultsQuantitative RT-PCR and immunofluorescence staining showed that the two MMP-2 isoforms were strongly induced by high glucose stimulation in H9C2 cells. Although no definite histologic features of diabetic cardiomyopathy were observed in diabetic mice hearts, left ventricular systolic dysfunction was determined by echocardiography. Quantitative RT-PCR and IHC staining showed this abnormal cardiac function was accompanied with the increases in the mRNA levels of the two isoforms of MMP-2 and related to intracellular localization.ConclusionTwo isoforms of MMP-2 were induced by high glucose stimulation in vitro and in a Type 1 DM mouse heart model. Further study is required to examine the role of these isoforms in DM CMP
- …