1,203 research outputs found

    Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities.

    Get PDF
    Legumes are an important plant functional group since they can form a tripartite symbiosis with nitrogen-fixing Rhizobium bacteria and phosphorus-acquiring arbuscular mycorrhizal fungi (AMF). However, not much is known about AMF community composition in legumes and their root nodules. In this study, we analyzed the AMF community composition in the roots of three nonlegumes and in the roots and root nodules of three legumes growing in a natural dune grassland. We amplified a portion of the small-subunit ribosomal DNA and analyzed it by using restriction fragment length polymorphism and direct sequencing. We found differences in AMF communities between legumes and nonlegumes and between legume roots and root nodules. Different plant species also contained different AMF communities, with different AMF diversity. One AMF sequence type was much more abundant in legumes than in nonlegumes (39 and 13%, respectively). Root nodules contained characteristic AMF communities that were different from those in legume roots, even though the communities were similar in nodules from different legume species. One AMF sequence type was found almost exclusively in root nodules. Legumes and root nodules have relatively high nitrogen concentrations and high phosphorus demands. Accordingly, the presence of legume- and nodule-related AMF can be explained by the specific nutritional requirements of legumes or by host-specific interactions among legumes, root nodules, and AMF. In summary, we found that AMF communities vary between plant functional groups (legumes and nonlegumes), between plant species, and between parts of a root system (roots and root nodules)

    Nucleon mass, sigma term and lattice QCD

    Full text link
    We investigate the quark mass dependence of the nucleon mass M_N. An interpolation of this observable, between a selected set of fully dynamical two-flavor lattice QCD data and its physical value, is studied using relativistic baryon chiral perturbation theory up to order p^4. In order to minimize uncertainties due to lattice discretization and finite volume effects our numerical analysis takes into account only simulations performed with lattice spacings a5. We have also restricted ourselves to data with m_pi<600 MeV and m_sea=m_val. A good interpolation function is found already at one-loop level and chiral order p^3. We show that the next-to-leading one-loop corrections are small. From the p^4 numerical analysis we deduce the nucleon mass in the chiral limit, M_0 approx 0.88 GeV, and the pion-nucleon sigma term sigma_N= (49 +/- 3) MeV at the physical value of the pion mass.Comment: 12 pages, 4 figures, revised journal versio

    Braided algebras and the kappa-deformed oscillators

    Full text link
    Recently there were presented several proposals how to formulate the binary relations describing kappa-deformed oscillator algebras. In this paper we shall consider multilinear products of kappa-deformed oscillators consistent with the axioms of braided algebras. In general case the braided triple products are quasi-associative and satisfy the hexagon condition depending on the coassociator PhiAAAPhi \in A\otimes A\otimes A. We shall consider only the products of kappa-oscillators consistent with co-associative braided algebra, with Phi =1. We shall consider three explicite examples of binary kappa-deformed oscillator algebra relations and describe briefly their multilinear coassociative extensions satisfying the postulates of braided algebras. The third example, describing kappa-deformed oscillators in group manifold approach to kappa-deformed fourmomenta, is a new result.Comment: v2, 13 pages; Proc. of 2-nd Corfu School on Quantum Gravity and Quantum Geometry, September 2009, Corfu; Gen. Rel. Grav. (2011),special Proceedings issue; version in pres

    Study of the three-dimensional shape and dynamics of coronal loops observed by Hinode/EIS

    Get PDF
    We study plasma flows along selected coronal loops in NOAA Active Region 10926, observed on 3 December 2006 with Hinode's EUV Imaging Spectrograph (EIS). From the shape of the loops traced on intensity images and the Doppler shifts measured along their length we compute their three-dimensional (3D) shape and plasma flow velocity using a simple geometrical model. This calculation was performed for loops visible in the Fe VIII 185 Ang., Fe X 184 Ang., Fe XII 195 Ang., Fe XIII 202 Ang., and Fe XV 284 Ang. spectral lines. In most cases the flow is unidirectional from one footpoint to the other but there are also cases of draining motions from the top of the loops to their footpoints. Our results indicate that the same loop may show different flow patterns when observed in different spectral lines, suggesting a dynamically complex rather than a monolithic structure. We have also carried out magnetic extrapolations in the linear force-free field approximation using SOHO/MDI magnetograms, aiming toward a first-order identification of extrapolated magnetic field lines corresponding to the reconstructed loops. In all cases, the best-fit extrapolated lines exhibit left-handed twist (alpha < 0), in agreement with the dominant twist of the region.Comment: 17 pages, 6 figure

    Properties of the random field Ising model in a transverse magnetic field

    Full text link
    We consider the effect of a random longitudinal field on the Ising model in a transverse magnetic field. For spatial dimension d>2d > 2, there is at low strength of randomness and transverse field, a phase with true long range order which is destroyed at higher values of the randomness or transverse field. The properties of the quantum phase transition at zero temperature are controlled by a fixed point with no quantum fluctuations. This fixed point also controls the classical finite temperature phase transition in this model. Many critical properties of the quantum transition are therefore identical to those of the classical transition. In particular, we argue that the dynamical scaling is activated, i.e, the logarithm of the diverging time scale rises as a power of the diverging length scale

    Evaluation of Irradiated Mandibles Using Emission Tomography, Bone Scans, and Radiography

    Full text link
    This study compared radiographs, bone scans, and computed emission tomograms with histologic findings in irradiated mandibles of adult Rhesus monkeys. Although osteocytes were lost in the path of the beam, many vessels were partially or totally occluded, the periosteum degenerated, the marrow became fibrotic, and cancellous bone proliferated abundantly, no changes were noted with radiography, conventional bone scanning, or computed emission tomograms. These clinical methods of examination may misrepresent the true condition of irradiated bone because of inadequate sensitivity or balance among factors that control radioactive tracer uptake in bone.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68112/2/10.1177_00220345800590120201.pd

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres
    corecore