934 research outputs found
Incremental Medians via Online Bidding
In the k-median problem we are given sets of facilities and customers, and
distances between them. For a given set F of facilities, the cost of serving a
customer u is the minimum distance between u and a facility in F. The goal is
to find a set F of k facilities that minimizes the sum, over all customers, of
their service costs.
Following Mettu and Plaxton, we study the incremental medians problem, where
k is not known in advance, and the algorithm produces a nested sequence of
facility sets where the kth set has size k. The algorithm is c-cost-competitive
if the cost of each set is at most c times the cost of the optimum set of size
k. We give improved incremental algorithms for the metric version: an
8-cost-competitive deterministic algorithm, a 2e ~ 5.44-cost-competitive
randomized algorithm, a (24+epsilon)-cost-competitive, poly-time deterministic
algorithm, and a (6e+epsilon ~ .31)-cost-competitive, poly-time randomized
algorithm.
The algorithm is s-size-competitive if the cost of the kth set is at most the
minimum cost of any set of size k, and has size at most s k. The optimal
size-competitive ratios for this problem are 4 (deterministic) and e
(randomized). We present the first poly-time O(log m)-size-approximation
algorithm for the offline problem and first poly-time O(log m)-size-competitive
algorithm for the incremental problem.
Our proofs reduce incremental medians to the following online bidding
problem: faced with an unknown threshold T, an algorithm submits "bids" until
it submits a bid that is at least the threshold. It pays the sum of all its
bids. We prove that folklore algorithms for online bidding are optimally
competitive.Comment: conference version appeared in LATIN 2006 as "Oblivious Medians via
Online Bidding
Signatures of Electronic Nematic Phase at Isotropic-Nematic Phase Transition
The electronic nematic phase occurs when the point-group symmetry of the
lattice structure is broken, due to electron-electron interactions. We study a
model for the nematic phase on a square lattice with emphasis on the phase
transition between isotropic and nematic phases within mean field theory. We
find the transition to be first order, with dramatic changes in the Fermi
surface topology accompanying the transition. Furthermore, we study the
conductivity tensor and Hall constant as probes of the nematic phase and its
transition. The relevance of our findings to Hall resistivity experiments in
the high- cuprates is discussed.Comment: 5 pages, 3 figure
Charge dynamics and "ferromagnetism" of A1-xLaxB6 (A=Ca and Sr)
Ferromagnetism has been reported recently in La-doped alkaline-earth
hexaborides, A1-xLaxB6 (A=Ca, Sr, and Ba). We have performed the reflectivity,
Hall resistivity, and magnetization measurements of A1-xLaxB6. The results
indicate that A1-xLaxB6 can be regarded as a simple doped semimetal, with no
signature of an excitonic state as suggested by several theories. It is also
found that the surface of as-grown samples (10 micrometer in thickness) has a
different electronic structure from a bulk one, and a fairly large number of
paramagnetic moments are confined in this region. After eliminating these
paramagnetic moments at the surface, we could not find any evidence of an
intrinsic ferromagnetic moment in our samples, implying the possibility that
the ferromagnetism of A1-xLaxB6 reported so far is neither intrinsic.Comment: 7 pages, 8 figure
The classical R-matrix of AdS/CFT and its Lie dialgebra structure
The classical integrable structure of Z_4-graded supercoset sigma-models,
arising in the AdS/CFT correspondence, is formulated within the R-matrix
approach. The central object in this construction is the standard R-matrix of
the Z_4-twisted loop algebra. However, in order to correctly describe the Lax
matrix within this formalism, the standard inner product on this twisted loop
algebra requires a further twist induced by the Zhukovsky map, which also plays
a key role in the AdS/CFT correspondence. The non-ultralocality of the
sigma-model can be understood as stemming from this latter twist since it leads
to a non skew-symmetric R-matrix.Comment: 22 pages, 2 figure
Coronal Diagnostics from Narrowband Images around 30.4 nm
Images taken in the band centered at 30.4 nm are routinely used to map the
radiance of the He II Ly alpha line on the solar disk. That line is one of the
strongest, if not the strongest, line in the EUV observed in the solar
spectrum, and one of the few lines in that wavelength range providing
information on the upper chromosphere or lower transition region. However, when
observing the off-limb corona the contribution from the nearby Si XI 30.3 nm
line can become significant. In this work we aim at estimating the relative
contribution of those two lines in the solar corona around the minimum of solar
activity. We combine measurements from CDS taken in August 2008 with
temperature and density profiles from semiempirical models of the corona to
compute the radiances of the two lines, and of other representative coronal
lines (e.g., Mg X 62.5 nm, Si XII 52.1 nm). Considering both diagnosed
quantities from line ratios (temperatures and densities) and line radiances in
absolute units, we obtain a good overall match between observations and models.
We find that the Si XI line dominates the He II line from just above the limb
up to ~2 R_Sun in streamers, while its contribution to narrowband imaging in
the 30.4 nm band is expected to become smaller, even negligible in the corona
beyond ~2 - 3 R_Sun, the precise value being strongly dependent on the coronal
temperature profile.Comment: 26 pages, 11 figures; to be published in: Solar Physic
Pair creation of anti-de Sitter black holes on a cosmic string background
We analyze the quantum process in which a cosmic string breaks in an anti-de
Sitter (AdS) background, and a pair of charged or neutral black holes is
produced at the ends of the strings. The energy to materialize and accelerate
the pair comes from the strings tension. In an AdS background this is the only
study done in the process of production of a pair of correlated black holes
with spherical topology. The acceleration of the produced black holes is
necessarily greater than (|L|/3)^(1/2), where L<0 is the cosmological constant.
Only in this case the virtual pair of black holes can overcome the attractive
background AdS potential well and become real. The instantons that describe
this process are constructed through the analytical continuation of the AdS
C-metric. Then, we explicitly compute the pair creation rate of the process,
and we verify that (as occurs with pair creation in other backgrounds) the pair
production of nonextreme black holes is enhanced relative to the pair creation
of extreme black holes by a factor of exp(Area/4), where Area is the black hole
horizon area. We also conclude that the general behavior of the pair creation
rate with the mass and acceleration of the black holes is similar in the AdS,
flat and de Sitter cases, and our AdS results reduce to the ones of the flat
case when L=0.Comment: 13 pages, 3 figures, ReVTeX
CDMS, Supersymmetry and Extra Dimensions
The CDMS experiment aims to directly detect massive, cold dark matter
particles originating from the Milky Way halo. Charge and lattice excitations
are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK,
allowing to separate nuclear recoils from the dominating electromagnetic
background. The operation of 12 detectors in the Soudan mine for 75 live days
in 2004 delivered no evidence for a signal, yielding stringent limits on dark
matter candidates from supersymmetry and universal extra dimensions. Thirty Ge
and Si detectors are presently installed in the Soudan cryostat, and operating
at base temperature. The run scheduled to start in 2006 is expected to yield a
one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on
sources and detection of dark matter and dark energy in the universe, Marina
del Rey, Feb 22-24, 200
Measuring Black Hole Spin using X-ray Reflection Spectroscopy
I review the current status of X-ray reflection (a.k.a. broad iron line)
based black hole spin measurements. This is a powerful technique that allows us
to measure robust black hole spins across the mass range, from the stellar-mass
black holes in X-ray binaries to the supermassive black holes in active
galactic nuclei. After describing the basic assumptions of this approach, I lay
out the detailed methodology focusing on "best practices" that have been found
necessary to obtain robust results. Reflecting my own biases, this review is
slanted towards a discussion of supermassive black hole (SMBH) spin in active
galactic nuclei (AGN). Pulling together all of the available XMM-Newton and
Suzaku results from the literature that satisfy objective quality control
criteria, it is clear that a large fraction of SMBHs are rapidly-spinning,
although there are tentative hints of a more slowly spinning population at high
(M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of
the spins of stellar-mass black holes in X-ray binaries. In general,
reflection-based and continuum-fitting based spin measures are in agreement,
although there remain two objects (GROJ1655-40 and 4U1543-475) for which that
is not true. I end this review by discussing the exciting frontier of
relativistic reverberation, particularly the discovery of broad iron line
reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and
MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk
reflection, this detection of reverberation demonstrates that future large-area
X-ray observatories such as LOFT will make tremendous progress in studies of
strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The
Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds
a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the
referencing of the discovery of soft lags in 1H0707-495 (which were in fact
first reported in Fabian et al. 2009
Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays
Average charged multiplicities have been measured separately in , and
light quark () events from decays measured in the SLD experiment.
Impact parameters of charged tracks were used to select enriched samples of
and light quark events, and reconstructed charmed mesons were used to select
quark events. We measured the charged multiplicities:
,
, from
which we derived the differences between the total average charged
multiplicities of or quark events and light quark events: and . We compared
these measurements with those at lower center-of-mass energies and with
perturbative QCD predictions. These combined results are in agreement with the
QCD expectations and disfavor the hypothesis of flavor-independent
fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
Adsorption of mono- and multivalent cat- and anions on DNA molecules
Adsorption of monovalent and multivalent cat- and anions on a deoxyribose
nucleic acid (DNA) molecule from a salt solution is investigated by computer
simulation. The ions are modelled as charged hard spheres, the DNA molecule as
a point charge pattern following the double-helical phosphate strands. The
geometrical shape of the DNA molecules is modelled on different levels ranging
from a simple cylindrical shape to structured models which include the major
and minor grooves between the phosphate strands. The densities of the ions
adsorbed on the phosphate strands, in the major and in the minor grooves are
calculated. First, we find that the adsorption pattern on the DNA surface
depends strongly on its geometrical shape: counterions adsorb preferentially
along the phosphate strands for a cylindrical model shape, but in the minor
groove for a geometrically structured model. Second, we find that an addition
of monovalent salt ions results in an increase of the charge density in the
minor groove while the total charge density of ions adsorbed in the major
groove stays unchanged. The adsorbed ion densities are highly structured along
the minor groove while they are almost smeared along the major groove.
Furthermore, for a fixed amount of added salt, the major groove cationic charge
is independent on the counterion valency. For increasing salt concentration the
major groove is neutralized while the total charge adsorbed in the minor groove
is constant. DNA overcharging is detected for multivalent salt. Simulations for
a larger ion radii, which mimic the effect of the ion hydration, indicate an
increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
- …
